Kapasitet på jernbane

Fra Lærebøker i jernbaneteknikk
Hopp til navigering Hopp til søk

__NUMBEREDHEADINGS__

Kapasitetsbegrepet

Avgrensning

Først skal vi gjøre en avgrensing siden kapasitetsbegrepet brukes i mange sammenhenger.

Ordet kapasitet betyr egentlig evne til å romme/yte. I vår sammenheng kan vi kanskje si at kapasitet betyr evne til å transportere.

Også innen jernbane-virksomhet omtaler man kapasitet i mange ulike forbindelser. Man kan snakke om et togs kapasitet (antall passasjerer eller tonnasje som toget kan “romme”), en skiftestasjons kapasitet (antall vogner den kan behandle pr. tidsenhet) og en enkelt streknings eller et helt nettverks kapasitet (hva strekningen/nettverket evner å transportere). Sistnevnte kan uttrykkes som antall tog pr. tidsenhet, passasjerer pr. tidsenhet (nærtrafikk, T-bane), vogner pr. tidsenhet (baner som overveiende transporterer gods) eller tonn pr. tidsenhet (f.eks. malmbaner). I dette dokumentet skal vi konsentrere oss om kapasiteten av en enkelt strekning og det i form av antall tog pr. tidsenhet.

Kapasiteten på en strekning avhenger ikke bare av strekningens utforming, men også av egenskapene til de togene som skal trafikkere den. Videre har rekkefølgen av ulike togslag (“ruteplanen”) stor betydning for kapasiteten. Dette skal vi se tydelig i kap. 2. Man kan altså endre en streknings kapasitet uten å endre noe ved selve strekningen. Det kan også anslås en kapasitet uten kjennskap til togenes rekkefølge ved å anta alle muligheter som like sannsynlige, men i det følgende vil vi holde oss til metoder basert på ruteplaner.

Teoretisk og praktisk kapasitet

Begrepsmessig skiller man ofte mellom den teoretiske (maksimale) kapasitet og den praktisk nyttbare kapasitet.

Når det gjelder den teoretiske kapasitet, tenker man seg at de aktuelle togslag i den aktuelle rekkefølge kjøres så tett som signalsystemet tillater, men likevel slik at togene kan kjøre med full hastighet. I dette ligger det altså ingen marginer som kan fange opp forsinkelser slik at nesten enhver forsinkelse vil forplante seg til flere (i verste fall alle) andre tog. En strekning kan vanskelig drives med en slik trafikkmengde i praksis, derav betegnelsen teoretisk og maksimal kapasitet.

I begrepet praktisk kapasitet trekkes det inn at transporten må skje med en viss kvalitet, i denne sammenheng særlig i form av punktlighet. Det må altså være mindre enn et visst maksimum av forsinkelser (eller forstyrrelser for å bruke et mer generelt ord) for at vi skal kunne si at vi opererer innenfor en gitt kapasitet. Når forsinkelser stadig er uakseptabelt store, er det et tegn på at man overskrider strekningens (praktiske) kapasitet. Vi vil derfor sette opp følgende generelle definisjon av den praktisk nyttbare kapasitet:

Kapasiteten av en strekning er evnen til å fremføre tog med en akseptabel punktlighet.

Denne definisjonen er ikke-operasjonell og inneholder et element av skjønn i og med uttrykket “akseptabel”. Den praktisk nyttbare kapasitet er således ikke et skarpt definert begrep. Dette vil bli noe nærmere omtalt og illustrert i kap. 5.3.2.

Man kan belaste en strekning ut over den praktiske kapasitet, men ikke ut over den teoretiske kapasitet (uten å øke kjøretider, bryte sikkerhetsbestemmelser o.l., altså bryte noen av forutsetningene kapasiteten er beregnet på grunnlag av).

Uttrykket forsinkelser må presiseres som tilleggs-forsinkelser påført på den aktuelle strekning, altså sekundære forsinkelser (dvs. forsinkelser som skyldes andre togs forsinkelser). Forsinkelser fra utgangsstasjonen, forsinkelser pga. uhell etc. sier selvsagt ikke noe om en streknings kapasitet. Men i hvor stor grad slike primære forsinkelser sprer seg til andre tog sier noe om strekningens kapasitet.

Det som vi her har omtalt som den teoretiske kapasitet kan oftest tallfestes forholdsvis eksakt. Dette skal vi vise metoder for i de følgende kapitler. For å få et tall for den praktiske kapasitet må man inkludere skjønnsmessige anslag; som oftest uttrykt i form av hvor stor del av den teoretiske kapasitet man kan utnytte. For grundigere studier vil bruk av simuleringsmodeller ofte være aktuelt.

Oversikt over innholdet

Vi tar først opp kapasitet på dobbeltspor fordi dette er lettest å framstille, og fordi det fins enkle formler som gir en god indikasjon på kapasiteten. Mesteparten av arbeidet med beregning av kapasiteten ved slike formler går med til å finne av de såkalte togfølgetidene. I kap. 2 forutsettes derfor at disse er kjent for å få introdusert det viktigste på en lettfattelig måte. I kap. 3 tar vi opp beregning av togfølgetider og noe mer om kapasitetsforhold på dobbeltspor.

For kapasitetsberegninger på enkeltsporede strekninger er de formlene man kan bruke, noe mer kompliserte og neppe så representative som ved anvendelse på dobbeltspor. Behandlingen av enkeltspor i kap. 4 er derfor noe enklere enn behandlingen av dobbeltspor. Viktige tiltak for kapasitetsøkning er også omtalt siden dette ofte er den mest aktuelle problemstillingen for enkeltspor.

Mye av framstillingen i disse kapitlene bygger på ref. / 1 /, / 2 / og / 3 /. Det første er et UIC-dokument som beskriver en metode for å anslå kapasitet i antall tog pr. tidsenhet. Fordi den er beskrevet i dokument 405E omtales den også som UIC 405E. Dokumentet er skrevet på tysk og er noe tungt tilgjengelig. Derimot er ref. / 2 / og / 3 / mye enklere å tilegne seg og er skrevet på engelsk. De omhandler britiske forhold med størst vekt på togfølgetid og 4-begrep signalsystem. Fremstillingen i kap. 2-4 er vesentlig enklere enn i ref. / 1 /, og det er lagt vekt på de faktorer som er aktuelle for norske forhold.

I kap. 5 gis en analytisk beskrivelse av forplantning av forsinkelser for enkle skjematiske situasjoner. Ulike typer feilsituasjoner og deres konsekvenser for strekningens kapasitet. omtales også.

Til slutt gis det - i kap. 6 - en kort innføring i bruk av simuleringsmodeller til å studere kapasitetsforhold på jernbanestrekninger. Fremstillingen sikter mot brukere av simuleringsmodeller - ikke mot dem som skal konstruere en modell.

Kapasitet på dobbeltspor, gitt togfølgetider

Vi ser her på kapasiteten av ett spor med all trafikk i samme retning.

Mesteparten av kapitlet omhandler beregning av den teoretiske kapasitet. Praktisk kapasitet omtales i et eget avsnitt. Alle relative forhold (endringer i kapasitet pga. ulike faktorer) som omtales er imidlertid like gyldige enten man ser på den teoretiske eller den praktiske kapasitet.

Med minste togfølgetid (engelsk “headway”) menes den minste tidsavstanden som kan opprettholdes mellom to tog slik at det andre toget på betryggende måte kan kjøre med maksimal hastighet. Eller noe annerledes uttrykt: den minste tidsavstanden hvor det andre toget kan kjøre uhindret av det første. Denne tidsavstanden må regnes mellom samme punkt (vanligvis fronten) på begge togene. I det følgende vil ofte bare togfølgetid bli brukt selv om det menes minste togfølgetid.

I dette kapitlet fortsettes stort sett at togfølgetidene er kjent. I neste kapittel går vi nærmere inn på beregning av togfølgetider.

For mesteparten av dette kapitlet gjør vi følgende forutsetninger og forenklinger for strekningen vi ser på:

  • Det er ikke avgreninger eller separate forbikjøringsspor underveis
  • Sporforbindelser mellom de to sporene til bruk ved enkeltsporet drift og andre unormale situasjoner regnes ikke som forbikjøringsspor
  • Alle togene trafikkerer hele strekningen

Ensartet trafikk

Vi ser først på det enkleste tilfellet hvor alle togene er (tilnærmet) like og framføres med samme hastighet og stoppmønster.

Dette er typisk for spesielle dobbeltsporstrekninger som T-baner og strekninger med bare én trafikktype (dette er uvanlig i norsk nett). Dette kan forekomme i perioder på på 4-spors strekninger som rundt Oslo hvor f.eks. passasjertog har identiske ruteplaner.

Den minste togfølgetiden vil da være den samme mellom alle togene, og den påvirkes ikke av togenes kjøretid fordi alle togene har samme kjøretid. Den teoretiske maksimalkapasiteten K i et tidsrom T er da ganske enkelt

der t er den minste togfølgetiden mellom togene av den aktuelle type.

Beregning av togfølgetider kommer vi tilbake til i neste kapittel, men vi skal her bare foregripe med en enkel beregning for å finne den hastighet som gir maksimal kapasitet.

Vi ser da på en strekning uten stopp hvor togene har konstant hastighet v over hele strekningen. Det foregår altså ingen akselerasjon eller retardasjon noe sted på strekningen. Videre forutsetter vi 3-begrep signalering med blokklengde b.

Togenes lengde kalles L, og det antas at bremsing innledes en avstand ts·v før et restriktivt signal. Togfølgetiden kan da uttrykkes (fullstendig utledning er gitt i kap. 3.3):


Strekningskapasiteten blir da


I dette enkle tilfelle skal vi finne den optimale hastighet, i betydningen den hastighet som gir maksimal kapasitet. Det må da forutsettes en sammenheng mellom blokklengde og hastighet; blokklengden settes i prinsippet lik bremselengden, men i praksis vil det alltid være en noe uspesifikk påplussing som kan være konstant eller hastighetavhengig. For denne beregningen vil vi velge et konstant tillegg s. Ved konstant retardasjon r blir blokklengden da


Ved innsetting for b i uttrykket for K får vi

Ved derivasjon av K m.h.p. v får vi


Følgelig er den optimale hastighet gitt ved


Eksempel: Vi skal anslå den optimale hastigheten for en strekning med ensartet trafikk av typiske nærtrafikktog. Vi bruker da verdiene L = 200 m, r = 1 m/s2, og skjønnsmessig setter vi s til 100 m. Dette gir


Den optimal hastighet blir følgelig 20 m/s (72 km/h).

Den tilhørende maksimale kapasitet per tidsenhet blir (med 10 sekunders siktavstand)


Den tilhørende blokklengden er


Vi minner om at det selv med denne korte blokklengden bare er forutsatt 3-aspekt signalering.

Som det fremgår av det ovenstående er det flere valg som er gjort i denne utledningen; dette gjelder uttrykkene for siktavstand (her valgt proporsjonal med hastigheten; størrelsen faller da bort ved utledning av den optimale hastighet) og uttrykket for blokklengde. Alternative måter å uttrykke disse på gir varierende optimal hastighet, men i alle tilfelle blir den optimale hastighet så lav at den som oftest vil være markedsmessig helt uinteressant.

Vi skal likevel nevne et tilfelle (forekommer ikke i Norge) hvor en slik optimal hastighet kan være interessant. Det gjelder en situasjon hvor to sterkt trafikkerte dobbeltspor har en kort felles strekning uten stopp. For å slippe en utvidelse til 4 spor kan det da være et alternativ å signalere en slik kort strekning for maksimal kapasitet selv om det betyr redusert hastighet. Som det fremgår av eksempelet blir da den teoretiske maksimalkapasiteten på ca. 70 tog/time for hvert spor! Selv om dette stort sett må betraktes som en kuriositet, nevnes det likevel for å vise hvor høyt opp i kapasitet man kan komme under slike helt spesielle forhold.

I praksis vil man således nesten alltid drive en dobbeltsporstrekning med en hastighet godt over den hastighet som er optimal med hensyn på kapasitet. Av uttrykket for den deriverte av kapasitet m.h.p hastighet ser vi at i dette normale hastighetsområdet (over den optimale hastighet) synker kapasiteten med økende hastighet. Dette skyldes at bremselengden normalt er proporsjonal med kvadratet av hastigheten. Ved vesentlig hastighetsmessig oppgradering av et dobbeltspor vil man altså normalt få lavere kapasitet.

Konsekvensen av å innføre et stopp på en slik strekning skal vi se på i kap. 3 under beregning av togfølgetider.

Blandet trafikk

Dette er situasjonen på Bane NORs dobbeltspor og den typiske situasjonen for et dobbeltspor generelt.

Generelt

Med blandet trafikk blir kapasiteten vesentlig lavere enn ved ensartet trafikk. Dette kan man lett forstå kvalitativt bare ved å se på et tid-veg-diagram (grafisk rute) for de to situasjonene. Et typisk eksempel med langsomme og raske tog annenhver gang er vist nedenfor.

Kapasitet fig1.png

Figur 1: Grafisk rute (tid-veg diagram) ved maksimalt blandet trafikk


Et raskt tog (representert ved de sterkest stigende linjene på figuren) vil kjøre fra et langsommere, og det blir en stor tidsluke ved ankomst til ende-stasjonen. Tilsvarende må et raskt tog starte langt bak et langsomt tog for å kunne kjøre uhindret. Den signalmessige minste togfølgetid blir bare utnyttet over en liten del av strekningen, og det er lange tidsrom hvor sporet ikke kan benyttes. Dette gir selvsagt plass til vesentlig færre tog enn ved ensartet trafikk, og kapasiteten blir vesentlig lavere.

I denne situasjonen vil tidsavstanden mellom to ulike tog variere over strekningen. Togfølgetiden vi skal bruke i kapasitetsberegningen, må da bety den minste tidsavstanden mellom to tog et fast sted på strekningen forutsatt at det andre toget kan kjøre uhindret over hele strekningen. Det er ofte praktisk å benytte strekningens begynnelse som det punkt togfølgetidene refererer til. I denne situasjonen kommer altså togenes kjøretider med i togfølgetiden, i tillegg til den tidsavstand mellom togene som kommer fra signalene Den tidsavstand mellom togene som kan holdes på et gitt sted på strekningen, vil vi kalle den signalmessige minste togfølgetid. Togfølgetiden for et langsomt tog etter et raskt vil da i hovedsak bli bestemt av signaleringen ut fra utgangsstasjonen (samt hastighetsforhold her og togenes akselerasjon). Denne togfølgetiden kaller vi t som før. Togfølgetiden for et raskt tog etter et langsomt vil være minst ved ankomst til endestasjonen, og det er signaleringen her (samt hastighetsforhold og togenes retardasjon) som bestemmer den signalmessige minste togfølgetid i dette tilfellet. Men togfølgetiden ved utgangsstasjonen vil bestå av denne signalmessige togfølgetiden samt differansen i kjøretid mellom de to togene (se figuren ovenfor).

For den tallmessige beregning deler vi togene inn i klasser eller grupper med like eller tilnærmet like egenskaper.Typiske grupperinger er stoppende persontog, direkte persontog, godstog. Det trengs nå togfølgetider for alle de kombinasjoner av togfølger som finnes i ruteplanen. Man trenger ikke en fullstendig ruteplan, men man må ha rekkefølgen av tog fra de ulike grupperinger. Man teller opp antall tilfeller av de ulike kombinasjoner og beregner en midlere togfølgetid:


Her betyr

nij : antall togfølgetilfeller hvor et tog fra gruppe j kommer etter et fra gruppe i

tij : minste togfølgetid for et tog fra gruppe j etter et fra gruppe i

Summen tas over alle kombinasjoner av i og j. Opptellingen av tilfeller gjøres for et tidsrom av tilstrekkelig lengde til å få med alle aktuelle situasjoner.

Deretter beregnes den teoretiske kapasiteten som før:


To tog-grupper

Som oftest vil man bare ha to eller tre tog-grupper. Vi skal se nærmere på tilfellet med to grupper, f.eks. stoppende og direkte persontog. Dette er typisk for Bane NORs dobbeltsporstrekninger i rushtiden. For enkelhets skyld lar vi det her være like mange tog i de to gruppene. Den generelle situasjonen behandles i kap. 3.6.3.

Markedsmessig er det for mange togtyper ønskelig at de kjører med fast frekvens (stiv ruteplan). Dette medfører at man får stoppende og direkte tog annenhver gang, som på foregående figur. Videre forutsetter vi her at den signalmessige minste togfølgetid t er den samme over hele strekningen.

Differansen i kjøretid mellom tog fra de to gruppene (kalles her for Δt) er den variabelen som betyr mest for kapasiteten i slike situasjoner.

Togfølgetiden for et stoppende tog etter et direkte blir da t, og for den motsatte situasjonen blir togfølgetiden t + Δt. Siden vi her forutsetter at begge situasjonene forekommer like ofte, blir den midlere togfølgetid


Den teoretiske kapasiteten blir da


Vi ser straks at blandet trafikk gir en drastisk lavere kapasitet enn ensartet trafikk siden differansen i kjøretid mellom ulike togtyper (Δt) normalt er mye større enn den signalmessige togfølgetiden t. Av samme grunn innser vi at differansen i kjøretid er den parameteren som betyr mest for kapasiteten. Vi skal nå se et tallmessig eksempel på dette.

Eksempel: Vi skal anslå den teoretiske maksimalkapasiteten for en dobbeltsporstrekning med stoppende og direkte tog annenhver gang. Vi vil bruke typiske tallverdier for Bane NORs forstadsstrekninger (Oslo - Lillestrøm / Ski / Asker).

På Bane NORs dobbeltsporstrekninger varierer den minste togfølgetiden i området 1.5 - 4 min. Vi vil her bruke t = 2 min. som er en aktuell verdi for strekninger med tett signalering. Kjøretiden for stoppende tog over de nevnte strekningene ligger i området 26 - 33 min. For direkte tog har vi tilsvarende 18 - 24 min. Som en typisk verdi for differansen i kjøretid vil vi her bruke Δt = 10 min. (effektive nærtrafikktog taper knappe 1 min. pr. stopp, og strekningene har 11 - 12 stopp).

Tallverdiene ovenfor gir en teoretisk kapasitet på

[tog/time]

Som kontrast ville ensartet trafikk gitt en teoretisk kapasitet på 30 tog/time ved samme togfølgetid!

En dramatisk forbedring av den signalmessige minste togfølgetid fra 2 til 1 min. har i denne situasjon liten innvirkning på kapasiteten; den øker bare til K = 60 / (1 + 10/2) = 10 [tog/time]. Tilsvarende effekt ville kunne oppnås ved 2 minutters reduksjon av kjøretidsdifferansen, Δt: K = 60 / (2 + 8/2) = 10 [tog/time].


Ved høy frekvens for den stoppende togtypen (15 minutters intervall er ofte ønskelig i rushtidene), får man behov for å kjøre 8 tog pr. time (eller flere, da det ofte vil være behov for mer enn 4 direkte tog pr. time siden disse dekker mange ulike destinasjoner). Man får da en kapasitetsutnyttelse som ligger altfor nær den teoretiske maksimalkapasitet, og punktligheten blir dårlig.

Et vanlig “triks” når man får for høy kapasitetsutnyttelse ved blandet trafikk, er å øke kjøretiden for de direkte togene. Den rutemessige kjøretiden blir altså vesentlig større enn den teknisk mulige kjøretiden. Kjøretidsdifferansen blir da mindre og kapasiteten høyere. Dette er mye benyttet på Bane NORs forstadsstrekninger.

Slike kunstig forlengede kjøretider for de raskeste togene er et typisk tegn på manglende strekningskapasitet.

Hvis man i en slik situasjon isteden prøver å øke kjøretiden for de langsomme togene, kan man komme ille ut å kjøre, fordi kapasiteten da vil bli redusert pga. den økte kjøretidsdifferansen. Hvis kjøretiden for de langsomme togene økes (for å prøve å bedre punktligheten eller pga. langsommere materiell), må kjøretiden for alle de raske togene økes like mye hvis kapasiteten ikke skal reduseres. I en situasjon med anstrengt kapasitet vil det således være viktig å holde forholdsvis stramme ruter for de langsomme togene.

Redusert kjøretid for de langsomme togene vil av samme grunn være et meget effektivt tiltak for å øke kapasiteten.

Ruteplanens innvirkning på kapasiteten

Vi skal så se litt på ruteplanens effekt på kapasiteten. Det tilfellet vi nå har sett mye på, er den situasjonen som gir lavest kapasitet. Straks man har mulighet til å kjøre to like tog etter hverandre, øker kapasiteten fordi man da får flere tilfeller med den minste togfølgetiden. Hvis vi vekselvis kjører n tog fra hver gruppe (figuren nedenfor viser n = 3), blir det 2n-1 tilfeller med den minste togfølgetid t for hvert tilfelle med togfølgetid t + Δt.

Kapasitet fig2.png

Figur 2: Grafisk rute (tid-veg diagram) med 3 tog i hver pulje


Den midlere togfølgetid blir da


Den teoretisk kapasiteten blir


Ved små n vil kapasiteten øke raskt med n, særlig i den vanlige situasjonen hvor Δt er betydelig større enn t.

En slik samling av like tog kalles puljekjøring, “batching” eller “flighting”. I praksis vil en slik ruteplan ofte være markedsmessig ugunstig og av den grunn ikke gjennomførbar. Men der hvor dette er mulig å gjennomføre, er det et effektivt tiltak for å øke kapasiteten.

Vi har nå sett mye på situasjonen med bare to tog-grupper. Ved flere enn to tog-grupper bør man på samme måte tilstrebe å ha færrest mulig tilfeller med et av de raskeste togene rett etter et av de langsomste. I hovedsak blir konklusjonene og resultatene for flere tog-grupper av samme type som for to selv om tallverdiene selvsagt blir noe forskjellig.

Som vi har sett flere eksempler på i det foregående, vil det ofte være en konflikt mellom markedsmessige krav til fast frekvens (stive ruter) og korte kjøretider på den ene siden og kravet til kapasitet på den andre siden. Pga. kapasitetens betydning for punktligheten, kan man si at dette til syvende og sist blir en avveining mellom ulike markedsmessige forhold.

Eksempel på beregning av teoretisk kapasitet

Vi vil her ta for oss et større eksempel med flere tog-grupper og ulike togfølgetider. Vi skal beregne den teoretiske kapasiteten i maksimaltimen i ettermiddags-rushet i retning fra Oslo til Lillestrøm. De rutedata som er benyttet er hentet fra ruteordningen for 1992/93 med noen ubetydelige endringer.

Først setter vi opp en liste (“rute”) over alle togene i rush-tiden:

Kapasitet figA.png

Vi skal beregne kapasiteten i maksimaltimen, og av tabellen ovenfor ser man at denne strekker seg fra 15:06 til 16:03, alternativt fra 15:09 til 16:06. Det er likegyldig hvilket alternativ man velger, og her bruker vi det sistnevnte som er markert med de to linjene i listen ovenfor.

Ovenfor har vi også inndelt togene i fire grupper etter kjøretid. Vi setter så opp en tabell med antallet (n) av hver kombinasjon av togfølger slik som vist i det følgende. I samme tabell er de minste togfølgetidene (t) også angitt. Minste togfølgetid refererer utgangsstasjonen (Oslo S) og består av den signalmessige minste togfølgetid pluss eventuell differanse i kjøretid. Den minste togfølgetid på strekningene Oslo S - Bryn og Strømmen - Lillestrøm er ca. 3 min. For å få med ulike minste togfølgetider i dette eksempelet har vi her satt den minste togfølgetiden ut fra Oslo S til 2.5 min.; for ankomst til Lillestrøm er den satt til 3 min. og for to like tog etter hverandre er den satt til 3.5 min. Sistnevnte verdi er også benyttet for tilfellet med gruppe 4 foran gruppe 3 fordi disse to gruppene fungerer som like tog over det meste av strekningen (gruppe 3 har sløyfet de to første stoppene sammenliknet med gruppe 4).

Etterfølgende tog/
Forankjørende tog
Toggruppe 1 Toggruppe 2 Toggruppe 3 Toggruppe 4
Toggruppe 1 n = 1
t = 3.5
n = 1
t = 2.5
Toggruppe 2 n = 1
t = 3 + 1
n = 2
t = 3.5
n = 1
t = 2.5
Toggruppe 3 n = 2
t = 3 + 4
n = 1
t = 3.5
Toggruppe 4 n = 2
t = 3.5 + 2

De tomme rutene indikerer kombinasjoner av togfølger som ikke forekommer i listen foran.

På grunnlag av denne tabellen kan vi regne ut den midlere togfølgetid:

[min.]


Den teoretisk maksimalkapasitet i maksimaltimen blir følgelig:

[tog/time]


Denne beregningen gav en vesentlig høyere kapasitet enn i eksempelet med maksimalt blandet trafikk (i kap. 2.2.2). Dette skyldes særlig to forhold:

Vi har i denne situasjonen en markert puljekjøring, særlig når vi tar med at gruppe 3 og 4 har ganske lik kjøretid.
Differansen i kjøretid mellom de ulike tog-gruppene er vesentlig mindre her enn i kap. 2.2.2. Dette skyldes både at de raske togene har fått store tillegg i kjøretiden (det mest ekstreme tilfellet er et fjerntog med samme kjøretid som et lokaltog med 9 stopp) og at halvparten av de stoppende togene har sløyfet 2 stopp og således redusert kjøretiden med 2 min.

Det forhold at vi her har brukt hele fire tog-grupper har liten betydning for resultatet når forskjellen mellom noen av gruppene er så liten som her. Dette kan vi se ved å slå sammen gruppe 1 og 2 til en gruppe med kjøretid 19.5 min. og gruppe 3 og 4 til en gruppe med kjøretid 25 min. Ved å bruke samme framgangsmåte som på foregående side får vi at denne inndelingen gir en midlere togfølgetid på 4.22 min. og en teoretisk maksimalkapasitet på 14.2 tog/time.

Utbygging fra 2 til 4 spor

Vi skal også kort omtale konsekvensene av en utbygging fra 2 til 4 spor.

Kapasitets-økningen ved en slik utbygging er sterkt avhengig av rutemønsteret:

Hvis det i utgangspunktet er ensartet trafikk på dobbeltsporet, blir selvsagt kapasiteten pr. spor uendret ved utbygging til 4 spor, og den totale kapasiteten blir doblet.
Ved blandet trafikk av i hovedsak to tog-grupper, vil man få ensartet eller tilnærmet ensartet trafikk på hvert spor etter utbygging. Som vi har sett i det foregående, blir det en stor kapasitets-økning pr. spor ved overgang fra blandet til ensartet trafikk. Ved maksimalt blandet trafikk (raske og langsomme tog annen hver gang) blir kapasiteten pr. spor mer enn doblet ved en utbygging fra 2 til 4 spor, og den totale kapasitet blir da mer enn 4-doblet!

Praktisk kapasitet

Den teoretiske kapasitet, som vi har behandlet i det foregående, er tilstrekkelig for f.eks. å sammenlikne ulike utbyggingsalternativer m.h.p kapasitet.

Men når man vil vite hvor mange tog det er forsvarlig å belaste en strekning med i praktisk drift, må vi anslå den praktiske kapasitet. Som nevnt i kap. 1.2, må det da trekkes inn skjønnsmessige forhold, oftest i form av erfaringstall (“tommelfingerregler”).

Den praktisk kapasitet (Kp) kan uttrykkes som en viss andel (u) av den teoretiske kapasitet (Kt):


Denne andelen eller utnyttelsesgraden (u) angir hvor mye av den teoretiske kapasitet som det anses forsvarlig å utnytte.

En annen uttrykksmåte for dette (hentet fra ref. / 1 /) er å gi den midlere togfølgetiden et tillegg (tb) uttrykt som en fraksjon (f) av midlere togfølgetid (tb = ftm). Dette tillegget kalles buffertid og gir uttrykk for at tidsavstanden mellom togene i praksis må være noe større enn den minste togfølgetiden som teknisk er mulig. Den praktisk kapasiteten blir da


Sammenhengen mellom utnyttelsesgraden u og faktoren f i buffertiden kan finnes ved å sette de to uttrykkene for praktisk kapasitet lik hverandre og sette inn for den teoretiske kapasitet. Vi får da likningen


Herav får vi

og videre


Faktoren f som gir forholdet mellom buffertiden og midlere togfølgetid kan altså uttrykkes ved utnyttelsesgraden u som

Følgende erfaringstall for utnyttelsesgraden er gjengitt i ref. / 1 / og stammer visstnok fra DB (Deutche Bundesbahn):

døgnkapasitet: 60% (3/5) utnyttelse av teoretisk kapasitet
timekapasitet: 75% (3/4) utnyttelse av teoretisk kapasitet

Ved kortere intervall for max belastning kan enda høyere utnyttelse benyttes. Ved T-banen i Oslo setter man vanligvis 80% utnyttelse i max-kvarteret som den maksimale praktiske kapasitet.

Hvilken utnyttelsesgrad man bør legge seg på (de ovenfor eller andre), avhenger først og fremst av hvor god punktlighet man tilstreber, men også av påliteligheten til alt det tekniske utstyret, dvs. hvor ofte det oppstår primære forsinkelser. Videre spiller det inn hvor dyktige operatørene (toglederne) er i å hindre at (primær-)forsinkelser sprer seg til andre tog.

Eksempel: Vi skal anslå den praktiske kapasitet på strekningen Oslo - Lillestrøm i ettermiddags-rushet. I kap. 2.2.4 ble den teoretiske kapasitet beregnet til 13.75 tog/time. Med den maksimale utnyttelsesgrad for timekapasitet på 75%, som anbefalt i ref. / 1 /, får vi da at den praktiske kapasitet blir 10.3 tog/time. Siden det ble kjørt 11 tog i maksimaltimen, ligger man altså litt over den praktiske kapasitet etter anbefalingen i ref. / 1 /. Den aktuelle trafikk tilsvarer en kapasitetsutnyttelse på 80%.

På JBVs forstadsstrekninger har man i rushtidene noe omkring 75% utnyttelse av teoretisk kapasitet (eksempelet ovenfor representerer antagelig en av de sterkeste kapasitetsutnyttelsene). Kjøretidene for de direkte togene er da økt for å redusere kjøretidsdifferansen og øke kapasiteten, som omtalt på slutten av kap. 2.2.2. En utnyttelsesgrad på ca. 75% gir altså ingen særlig god punktlighet med de ressurser (både teknisk utstyr og personell) som NSB disponerer.

I situasjoner hvor man ønsker vesentlig bedre punktlighet enn det JBV har i dag (tilbringertjeneste til hovedflyplass er et aktuelt eksempel), bør man legge seg på en lavere utnyttelse enn det som er anført ovenfor.

Lengre strekninger

På lengre strekninger er det ofte avgreninger, større stasjoner hvor tog starter eller ender, forbikjøringsmuligheter (for rutemessig bruk) o.l. For å finne kapasiteten for slike lengre strekninger deles strekningen inn i strekningsavsnitt hvor hvert strekningsavsnitt oppfyller de betingelser nevnt innledningsvis i kapitlet. Deretter beregner man kapasiteten for hvert strekningsavsnitt for seg.

Den teoretisk kapasitet for hele strekningen vil da være lik kapasiteten til det strekningsavsnitt med lavest kapasitet, det dimensjonerende strekningsavsnitt.

For den praktisk kapasitet kan det være nødvendig å trekke inn totalstrekningens lengde. Det synes jo rimelig at det er vanskeligere å framføre tog med en viss punktlighet over en lang strekning enn over en kort. Dette er særlig aktuelt hvis kapasiteten er omtrent like stor på de ulike strekningsavsnittene.

Hvis strekningsavsnittet med lavest kapasitet har markert lavere kapasitet enn de øvrige (“flaskehals”), synes det derimot rimelig å la den praktisk kapasitet for strekningsavsnittet også bli den praktiske kapasitet på totalstrekningen.

Med de dobbeltsporstrekninger som JBV i dag har, er de vurderingene som er gjort her lite aktuelle, men i forbindelse med de store utbygginger som nå planlegges, vil man få lengre dobbeltsporstrekninger, og da vil slike vurderinger kunne komme inn.

Under behandlingen av enkeltspor vil vi omtale betydningen av antall strekningsavsnitt og dimensjonerende strekningsavsnitt noe mer da disse begrepene spiller en større rolle ved enkeltspor slik som forholdene er i Norge.

På mange hovedstrekninger på kontinentet er det blandet trafikk av hurtige persontog (IC) og godstog. Det er da vanlig med regelmessige forbikjøringsspor (3. spor) plassert med jevne mellomrom omtrent som kryssingsspor på enkeltsporede strekninger.Ved kapasitetsberegning for slike strekninger må man finne dimensjonerende delstrekning og ta hensyn til antall strekningsavsnitt på tilsvarende måte som beskrevet for enkeltspor (kap. 4.2).

Signalsystem og togfølgetid dobbeltspor

I dette kapitlet skal vi gå nærmere inn på beregning av togfølgetider. Det blir derfor nødvendig å beskrive ulike typer signalsystem da disse har stor betydning for togfølgetidene og dermed for kapasiteten. En del av de kapasitetsmessige betraktninger fra forrige kapittel er det naturlig å videreføre i dette kapitlet.

Elementene som inngår i minste togfølgetid

Den minste togfølgetiden for en strekning er den minste tidsavstanden mellom to tog slik at det andre toget på betryggende måte kan holde sin maksimale hastighet (samme hastighet som det første toget).

Hvis tog 2 skal beholde sin konstante hastighet og dermed konstant (minimum) togfølgetid etter tog 1, må alle signaler vise grønt før toget når fram til dem. Hvis ikke dette er tilfelle, vil tog 2 begynne å bremse, og tidsavstanden mellom togene vil øke.

Det basale sikkerhetskravet er at det alltid skal være minst en bremselengde fritt spor foran toget. Avhengig av det signalsystemet som benyttes, vil det i praksis bli et større eller mindre tillegg til dette basis-kravet. Figur 4 m.fl. viser de elementene som inngår i den minste togfølgetiden.

I det følgende omtales de enkelte elementene i togfølgetiden.

Siktavstand

Selv om det alltid er tilstrekkelig bremselengde fra det første restriktive signal til stopp-punktet, vil en lokomotivfører normalt begynne å redusere hastigheten et stykke før signalet istedenfor nøyaktig der signalet står. Dette kan dels skyldes forsiktighet, dels det forhold at bremsing øker sannsynligheten for at signalet skifter til grønt før toget passerer det slik at full hastighet kan gjenopptas. Det punktet hvor bremsing innledes kalles iblant - særlig i engelsk litteratur - for siktpunktet, og avstanden til signalet for siktavstanden (“sighting point / distance”). I denne betydning av ordet er siktavstanden ofte kortere enn avstanden fra det punkt hvor føreren først ser signalet. I andre sammenhenger, f.eks. vurdering av signalplassering ute i terrenget, brukes ordet siktavstand i den sistnevnte og mer naturlige betydningen. I dette notatet vil vi bruke ordet i den førstnevnte betydningen. Det samme gjelder også når man gir inn data til en del simuleringsmodeller som regner så nøyaktig at de tar hensyn til dette forholdet.

Siktavstanden i førstnevnte betydning vil variere fra fører til fører og fra strekning til strekning. Den kan angis som en lengde eller relateres til tid, altså hvor lenge før signalet føreren vil begynne å bremse. Bruk av tidsavstand synes oftest som det mest rimelige, spesielt i slike teoretisk betraktninger som her.

For tallberegninger kan 10 sekunder anses som en rimelig verdi.

Et moment som ikke er vist på figurene, er den tekniske reaksjonstiden, dvs. tiden fra et tog frigir en blokkstrekning til dette vises på signalene bak toget. For automatiske systemer er denne tiden normalt så liten at den kan neglisjeres i beregningene. I spesielle situasjoner hvor det inngår manuelle ledd i “signaleringskjeden”, er det viktig å få dette med i beregningen av togfølgetiden.

Blokkstrekninger og bremselengde

Denne delen av togfølgetiden består av avstanden fra det første restriktive signalet til stopp-punktet (rødt signal). Den består av et antall blokkstrekninger; antallet avhenger av signalsystemet. Den kan ikke under noen omstendighet være kortere enn bremselengden for det toget som har lengst bremselengde av de togene som tillates å trafikkere strekningen (det dimensjonerende toget). I situasjoner hvor det ikke er behov for å utnytte strekningen maksimalt kan denne avstanden være vesentlig lengre, noe som gir et rimeligere signalanlegg.

Sammenhengen mellom blokklengde og bremselengde varierer med type signalsystem og omtales under de enkelte signalsystemene.

Ved JBV er det på de fleste eksisterende strekninger brukt en “standard” bremselengde på ca. 800m. Dette har sammenheng med at både persontog med toppfart 120-130km/h og godstog med toppfart 80-90km/h har omtrent denne bremselengde. Ved andre forvaltninger er det vanlig at man har bremsekurver/tabeller med bremselengde som funksjon av hastighet og stigning/fall. Ved planlegging av nyanlegg og oppgradering av eksisterende anlegg regner man også i JBV med betydelig høyere hastigheter og lengre bremselengder.

Denne avstanden (fra det første restriktive signalet til stopp-punktet) utgjør nesten alltid hoveddelen av togfølgetiden, og det er denne avstanden man kan påvirke gjennom valg av signalsystem og signalplassering.

Ved design av et signalanlegg må man velge dimensjonerende hastighet og dermed bremselengde. Strekningen kan da normalt ikke trafikkeres av tog med høyere toppfart med mindre disse tog har så gode bremser at de kan stoppe fra sin toppfart innen det dimensjonerende togets bremselengde.

Toglengde

Toglengden er den siste faktoren som inngår i togfølgetiden. For persontrafikk, hvor togene normalt er forholdsvis korte, har den ganske liten innflytelse på resultatet rent tallmessig. Et klart unntak er situasjoner med ekstremt korte blokklengder slik som f.eks. i beregningen av den optimale kapasitet i kap. 2.1.

For godstog som normalt er vesentlig lengre og har lavere hastighet, vil toglengden gi et vesentlig bidrag til togfølgetiden. Derfor er vanligvis togfølgetiden mellom to godstog vesentlig større enn mellom to persontog.

Omtale av ulike signalsystem

Det aller enkleste form for signalsystem (med lys) består av bare en type signaler som kan vise to signalbilder:

rødt (stopp) når det er et tog på strekningen fram til følgende signal
grønt (kjør) når tilsvarende strekning er ledig.

Dette er et system med 2 begrep (= signalbilder), og det kan kun brukes for systemer hvor hastigheten er så lav at det er tilstrekkelig å bremse når man ser det røde signalet (f.eks. trikkelinjer). Hvert signal er logisk (og elektrisk) knyttet til den etterfølgende strekning fram til neste signal. En slik strekning kalles ofte blokkstrekning (et eller flere elektrisk isolerte sporfelt), og når det er et tog på denne strekningen viser signalet alltid rødt.

Tog har generelt lange bremsestrekninger pga. den lille friksjonen det er mellom stålhjul og stålskinne. Det skal derfor ikke særlig høy hastighet til før bremselengden blir så lang at det er nødvendig å begynne å bremse før føreren ser det røde signalet. Det må da settes opp et signal på det stedet hvor bremsing må starte, som gir et forvarsel om at neste signal viser stopp. Et slikt signal kalles et forsignal, mens de opprinnelige kalles hovedsignaler. Et forsignal er logisk knyttet til etterfølgende hovedsignal og ikke til noe eget sporfelt.

JBVs ordinære signalsystem består av slike forsignaler og hovedsignaler. Hovedsignalet har 3 lys med følgende signalbilder og betydninger:

rødt: stopp (tog på neste blokkstrekning)
et grønt: kjør med lav hastighet (fordi det er en sporveksel i avvik på neste blokkstrekning)
to grønne: kjør med full hastighet (ingen sporveksel i avvik på neste blokkstrekning)

Forsignalet har to lys med følgende signalbilder og betydninger:

blinkende gult: tilhørende hovedsignal viser rødt
blinkende gult og grønt: tilhørende hovedsignal viser ett grønt
blinkende grønt: tilhørende hovedsignal viser to grønne

JBVs signalsystem med separate for- og hovedsignaler er typisk egnet for enkeltspor. På dobbeltsporstrekninger med tett trafikk trenger man korte blokklengder (dvs. ikke vesentlig lengre enn dimensjonerende togs bremsestrekning), og da må forsignalet settes på foregående hovedsignals mast. Man får da et såkalt 3-begrep signalsystem, men med 5 lys fordi informasjon om eventuell avvikende sporveksel fortsatt er med. I et rent 3-begrep signalsystem brukes vanligvis bare 3 lys med følgende betydninger (vanlig fargebruk er også angitt):

rødt: stopp (tog på neste blokkstrekning)
gult: vent stopp (neste signal viser nå stopp, dvs. det er en bremselengde til stopp-punktet, og bremsing må umiddelbart iverksettes)
grønt: kjør (neste signal viser minst gult, dvs. det er minst to bremselengder til forangående tog, og full hastighet kan holdes fram til neste signal)

De kapasitetsmessige forhold avhenger ikke av hvordan man signalerer de ulike begrepene. I det følgende vil de sistnevnte betegnelsene brukes, og når det trengs forkortelser (figurer o.l.) brukes for enkelhets skyld de engelske forkortelsene R, Y og G.

Ved 3-begrep signalering er det alltid minst en bremselengde (for dimensjonerende tog) mellom signalene og følgelig minst to bremselengder mellom togene. Hvis det trengs høyere kapasitet, må avstanden mellom togene reduseres. Dette kan gjøres ved å innføre et 4. begrep, dvs. forsignalering over to blokkstrekninger. Da begynner toget å bremse to blokklengder før stopp-punktet, og dermed kan blokklengden reduseres til halvparten av dimensjonerende togs bremselengde.

For 4-begrep systemer varierer signalbildene mer fra land til land. I det følgende beskrives de engelske signalbilder. Det brukes der 4 lys med følgende signalbilder (vanlig forkortelse er også angitt):

rødt (R): stopp (tog på neste blokkstrekning)
et gult (Y): vent stopp (neste signal viser nå stopp, dvs. det er mindre enn en bremselengde til stopp-punktet; fortsett bremsing)
to gule(YY): innled bremsing (det er en bremselengde til stopp-punktet)
grønt (G): kjør (neste signal viser minst to gule, dvs. full hastighet kan holdes fram til neste signal)

4-begrep signalsystem er til nå ikke tatt i bruk ved JBV. Det foreligger imidlertid et forslag om anvendelse av nåværende signalbilder til 4-begrep signalering. Dette forslaget innebærer at ett grønt lys i hovedsignalet også kan bety at det er mindre enn en bremselengde til stopp-punktet, altså at hastigheten må være lavere enn maksimalhastigheten.

Togfølgetidene kan ytterligere reduseres og kapasiteten økes ved å innføre enda flere begrep. Generelt kan man snakke om n-begrep signalering. Med økende antall begrep blir det mer upraktisk med bare utvendige signaler, og det brukes da oftest innvendig signalering (førerrom-signalering, “cab signalling”) som angir hastighet direkte istedenfor signalbilder.

Systemer som gir lokomotivføreren kontinuerlig informasjon om avstanden til forangående tog, omtales som systemer med rullende eller dynamisk blokk (i motsetning til den ordinære statiske blokkdelingen). Ved bruk av slike systemer kan det tillates at avstanden mellom to tog bringes ned mot en dimensjonerende bremselengde. Rent matematisk kan dette betraktes som et system med svært mange begrep (n tilnærmet uendelig).

Hvis systemet er slik at denne bremselengden ikke er relatert til det dimensjonerende toget for strekningen slik som ved en statisk blokkdeling, men beregnes kontinuerlig ut fra hastigheten for det aktuelle toget, betegnes systemet som kjøring på elektronisk sikt. Avstanden mellom togene kan altså da være kortere enn bremselengden for det dårligst bremsende tog som tillates på strekningen. Videre er denne bremselengden og dermed den minimale avstanden til forangående tog også avhengig av den aktuelle hastigheten slik at avstanden til forangående tog kan reduseres når togets hastighet reduseres.

For disse systemer er det selvsagt kun aktuelt med innvendig signalering (selv om det ofte også fins et vanlig ytre system som tjener som reserve, samt som signalering for tog uten det kontinuerlige systemet). Vi vil her ikke gå nærmere inn på virkemåten for slike systemer. I det følgende vil kontinuerlige systemer (eller uendelig mange blokkstrekninger) bli brukt som grensetilfelle for den minste togfølgetid som kan oppnås.

Tradisjonelle ytre signaler er alltid relatert til en blokkstrekning (ett eller flere isolerte sporfelt). Men det er noe ulik praksis når det gjelder plassering av signalet i forhold til det fysiske delepunkt mellom blokkstrekningene (“isolert skjøt”). Ved JBV skal signalet plasseres ved dette delepunktet. Ved en del andre jernbaner, bl.a. BR (British Railways), plasseres signalet alltid et stykke før den (logisk) tilhørende blokkgrense, se figur nedenfor.

Kapasitet fig3.png

Figur 3: Signalplassering i forhold til blokkgrense, ved JBV (øverst) og BR (nederst). Figuren viser også teoretisk minste togseparasjon (ved stillstand).


Avstanden fra signalet til blokkgrensen kalles i britisk litteratur for “overlap”. Denne utgjør en sikkerhetssone fra signalet til togvegens slutt, og er den minste separasjonen som kan oppnås mellom to tog (dvs. ved stillstand). Ved BR har denne sonen en lengde på 2-300 yards. Den inngår alltid i togfølgeberegninger. Bruk av en slik sone medfører at blokklengdene strikt kan fastlegges etter dimensjonerende togs bremselengde uten noe sikkerhetsmessig “påslag”. På alle figurer som i det følgende er hentet fra britisk litteratur, vil man finne denne sonen.

Beregning av togfølgetider ved konstant hastighet og blokklengde

Når en strekning har konstant hastighet og like lange blokklengder, er det enkelt å beregne togfølgetidene.

Denne type beregninger er hovedsaklig egnet til å anslå kapasitet før en endelig signalplassering er fastlagt eller som grove overslag uten å gå inn på detaljer i signalplasseringen. Videre er de egnet til generelt å demonstrere den kapasitetsmessige virkning av slike ting som å innføre stopp, endre signalsystemet fra 3- til 4-begrep o.l.

Strekning uten stopp

I denne situasjonen forutsetter vi at det ikke foregår noen akselerasjon eller retardasjon noe sted på strekningen. Med 3-begrep signalering blir situasjonen ved minste togfølgetid da som på figuren nedenfor.

Fig-4.png

Figur 4: Minste togfølgetid ved 3-begrep signalering.

Her betegner b blokklengden som i dette tilfellet er identisk med en standard bremselengde. Togenes lengde kalles L, og togfølgetiden uttrykkes da ofte som


hvor s er siktavstanden, og det forutsettes da at lokføreren begynner å bremse denne avstanden før et restriktivt signal. Det virker kanskje mer rimelig at denne avstanden er proporsjonal med hastigheten, og togfølgetiden kan da uttrykkes


hvor ts er “siktavstanden”, dvs. tiden som går med til å kjøre siktavstanden (ts = s/v).

Ved 4-begrep signalering blir situasjonen som vist nedenfor:

Fig-5.png

Figur 5: Minste togfølgetid ved 4-begrep signalering.


b betegner fortsatt en standard bremselengde, men denne tilsvarer nå 2 blokkstrekninger. Med for øvrig de samme betegnelsene som ovenfor blir minste togfølgetid


Generelt har vi for et n-begrep system (forsignalering over n-1 blokkstrekninger) at togfølgetiden blir

Når n er meget stor, blir togfølgetiden tilnærmet


Man snakker da om kontinuerlige systemer eller dynamisk (rullende) blokk.

Strekning med stopp

Vi ser nå på en strekning hvor det fortsatt er (tilnærmet) like tog med konstant hastighet v og bremselengde (blokklengde) b, men hvor alle tog har et stopp. Det er altså fortsatt snakk om ensartet trafikk. Videre forutsetter vi her konstant akselerasjon (a) og retardasjon (r).

Innføring av et stopp (i hovedsporet, altså uten noen ekstra spor) fører til at togfølgetiden øker vesentlig fordi blokkstrekningen som inneholder stoppestedet, blir belagt i vesentlig lengre tid. Dette er illustrert i Figur 10.

Togfølgetiden med stopp kan uttrykkes som togfølgetiden uten stopp samt et tillegg. Dette tillegget består av det økte tidsforbruket pga. akselerasjon og retardasjon, samt oppholdstiden ved plattform (to).

Tidstillegget pga. en retardasjon og akselerasjon er


Togfølgetiden for en strekning med stopp blir da ved 3-begrep signalering

Ved 4-begrep signalering blir den tilsvarende


Ved flere begrep generaliseres uttrykket på samme måte som uten stopp.

Vanligvis er retardasjonen for et tog noe høyere enn akselerasjonen fordi et tog normalt bremser på alle aksler, men ikke har trekk-kraft på alle. For overslagsberegninger slik som her, og for nåværende norske hastighetsforhold er det likevel en god tilnærmelse å sette akselerasjonen lik retardasjonen. Det vil vi gjøre i de fleste tallberegninger i det følgende.

Vi skal nå se på optimalisering av kapasiteten på samme måte som i kap. 2.1, dvs. vi skal finne den hastighet som gir maksimal kapasitet når det er et stoppested på strekningen hvor alle tog stopper. Som forrige gang, gjør vi dette for 3-begrep signalering og setter bremselengden (og blokklengden) til


For enkelhets skyld setter vi a = r, og uttrykket for den teoretiske kapasiteten blir da


Ved derivasjon m.h.p. v og noe regning kommer vi fram til at den optimale hastigheten nå er gitt ved


Eksempel: Vi skal anslå den optimale hastigheten for en strekning med ensartet trafikk av typiske nærtrafikktog som alle har stopp. Vi bruker de samme verdiene som i eksempelet i kap. 2.1 (L = 200 m, r = 1 m/s2, s = 100 m). Dette gir


Den optimal hastighet blir følgelig 11.5 m/s (42 km/h) mot nesten det dobbelte i tilfellet uten stopp. En så lav hastighet er selvfølgelig helt uinteressant i praksis.

Den tilhørende maksimale kapasitet per tidsenhet blir (med 10 sekunders siktavstand, 40 sekunders oppholdstid og a = r)


[tog/time]


Dette er mer enn en halvering sammenliknet med tilsvarende situasjon uten stopp (K = 72 tog/time). Hvis vi bruker den optimale hastigheten (og bremselengden) for situasjonen uten stopp som ble funnet i kap. 2.1, synker den teoretiske kapasiteten ytterligere, til ca. 27 tog/time. At reduksjonen ikke er større, skyldes at blokklengdene her er så (urealistisk) korte at det konstante tillegget (s) som vi satte til 100 m utgjør en stor del av blokklengden.

Vi har altså sett at det å innføre et stopp (for alle tog) på en strekning hvor det før ikke var stopp, fører til en drastisk reduksjon av kapasiteten. Et stopp i hovedsporet på en dobbeltsporstrekning kan altså betraktes som en (lokal) flaskehals fordi togene oppholder seg så mye lengre der enn andre steder på strekningen. Skal kapasiteten opprettholdes på omtrent samme nivå ved innføring av stopp, må stoppestedet/stasjonen ha flere spor, altså økt kapasitet i flaskehalsen.

Uttrykkene for togfølgetid og kapasitet blir de samme hvis det er flere stopp for alle tog på strekningen. Stoppestedet med lengst oppholdstid er da bestemmende for kapasiteten.

Grafisk beregning av togfølgetider

I det foregående har vi forutsatt at både hastighet og blokklengde er konstante over en lengre strekning. I mange andre land er det ofte konstant maksimalhastighet over lange strekninger, og siktforholdene er gode slik at signalene kan plasseres med jevne intervaller. I Norge er hastighetsstandarden - i tillegg til å være lav - også meget varierende. Det er sjelden mer enn noen få km i trekk med samme hastighet. Pga. terrenget er det ofte vanskelig å plassere signaler slik at det blir tilstrekkelig sikt, og blokklengden (signalavstanden) vil derfor i praksis variere fra signal til signal. Beregningene i foregående avsnitt kan derfor bare benyttes til overslag. Hvis man skal ha mer nøyaktige togfølgetider, må man gå grundigere til verks.

I det følgende vil vi vise noen eksempler på hvordan man kan finne togfølgetider ut fra grafer. Det brukes da detaljerte tid-veg diagrammer, ikke skjematiske (grafiske ruter) som vist tidligere.

Først vises over fire figurer hvordan man tegner et slikt togfølge-diagram. I disse figurene er det konstant hastighet uten stopp, men signalavstandene er ujevne. Man begynner med å tegne aksene, og signalplasseringen markeres på strekning-aksen. Så tegnes en nøyaktig kurve som viser både fronten og enden av det første toget. Følgende figur viser dette.

Fig-6.png

Figur 6: Begynnelsen av togfølge-diagram.

Videre tegnes for hvert blokkskille en vertikal linje opp til kryssingspunktet med linjen som markerer enden av det første toget, og deretter føres linjen horisontalt bort til tids-aksen. Disse linjene er stiplet på figuren nedenfor. I denne figuren er det forutsatt at signalet står ved blokkskillet (norske forhold). Disse horisontale linjene markerer når hvert signal skifter mellom de ulike begrepene fra stopp (rødt) til høyeste begrep (grønt). Signalbildene er også påført figuren.

Fig-7.png

Figur 7: Togfølge-diagram med første tog og signalbilder bak toget.

Man har nå de nødvendige opplysninger for å plassere kurven for fronten av det andre toget slik at man oppnår minimal togfølgetid. Det kan kreve noe prøving og feiling å finne den plassering av kurven som gir minimal togfølgetid hvis det ikke er opplagt hvor det kritiske punktet (signalet) er. I figuren ovenfor er det selvsagt den lengste blokkstrekningen som er dimensjonerende, og vi ser at dette gir seg utslag ved at det tar vesentlig lengre tid å få grønt i de to signalene rett før denne blokkstrekningen enn i de øvrige signalene.

I neste figur er kurven for fronten av det andre toget plassert. Siktavstand må medtas når man plasserer denne kurven.

Fig-8.png

Figur 8: Fullstendig togfølge-diagram inklusive hjelpelinjer.

Man kan nå direkte lese av togfølgetiden på tidsaksen.

I den neste figuren er hjelpelinjene fjernet for å vise hvordan togfølge-diagrammene ofte framstår.

Fig-9.png

Figur 9: Fullstendig togfølgediagram slik de oftest vises (hjelpelinjer fjernet).

I denne enkle situasjonen vil det, som tidligere nevnt, være den lengste blokkstrekningen som er dimensjonerende, og det kritiske punkt (signal) blir et av de to rett før den kritiske blokkstrekningen.

I det følgende skal vi se på noen ferdige togfølgediagrammer (“headway diagrams”) for situasjoner med varierende hastighet, stopp m.m. Figurene er hentet fra ref. / 3 / og gjengir engelske forhold. Det brukes derfor gjennomgående 4-begrep signalering med de vanlige forkortelsene R, Y, YY og G, samt “overlap”.


Togfølge-diagram for viktige situasjoner

Når man har et stopp i hovedsporet fører dette til vesentlig økt togfølgetid og redusert kapasitet som tidligere omtalt, bl.a. i kap. 3.3.2. Følgende figur viser dette tydelig.

Fig-10.png

Figur 10: Togfølge-diagram for strekning med konstant hastighet med stopp.

Som man ser helt til venstre i figuren, kunne togfølgetiden i dette tilfellet ha vært ca. 1.5 min. hvis togene ikke hadde hatt stopp, mens den med stopp (den viste linje) er 3 min.

En vesentlig årsak til økningen i togfølgetid er at det vanligvis forutsettes at passerende tog skal kunne holde full hastighet slik at signalavstanden må være den samme som på strekningen for øvrig. Hvis det er en driftsmessig forutsetning at alle tog skal stoppe (kan være aktuelt for T-baner), kan signalavstanden reduseres, og togfølgetiden blir noe mindre. Dette vises det eksempler på senere i dette kapitlet under omtale av kjøring ut fra eller inn til stasjon.


I neste figur vises effekten av en kraftig hastighetsreduksjon på en strekning med konstant signalavstand.

Fig-10.png

Figur 11: Togfølge-diagram for hastighetsreduksjon og konstant signalavstand.

Vi ser at virkningen blir omtrent som for et stopp (figuren viser et ekstremt eksempel med en hastighetsreduksjon til femteparten av maksimalhastigheten).

De kritiske punktene, som hindrer redusert togfølgetid, er her ved signal A og D. Vi skal se litt nærmere på muligheten for å redusere togfølgetiden ved endret signalplassering. Både strekningene AC og BD må være minst en dimensjonerende bremselengde fordi toget kan ha maksimal hastighet ved siktavstand på de tilhørende signalene. Blokkstrekningen DE kan derimot reduseres, men dette påvirker ikke signaleringen ved A som er kritisk for togfølgetiden. Dermed kan togfølgetiden ikke reduseres fordi eneste mulighet for å få grønt tidligere i signal A ville vært en reduksjon av lengden AD.

Vi ser altså at togfølgetiden blir lengre ved varierende hastighet enn ved konstant hastighet.


Vi ser så på situasjonen hvor to tog kjører ut fra en større stasjon, dvs. enten en sekkestasjon (buttspor) eller en stasjon hvor det er en forutsetning at alle tog stopper eller hvor tillatt hastighet over stasjonen er vesentlig lavere enn linjehastigheten.

Det kan brukes kortere signalavstander ut fra en slik stasjon fordi hastigheten her nødvendigvis må være lavere enn ute på linjen.

Fig-12.png

Figur 12: Togfølgediagram for to tog som starter fra en stasjon.

Det er her benyttet 3-begrep signalering på de to første signalene fordi hastigheten her er så lav. Dette er vanlig praksis ved 4-begrep signalering og medfører at det andre toget får grønt tidligere enn det ville ha gjort ved bruk av 4 begrep på alle signaler.

Av figuren ser man at det her er forutsatt at togets front står helt i enden av plattformen og altså rett ved det første signalet.

På denne figuren går det ca. 20 sekunder fra det andre toget får grønt i første signal til det starter. Det må tas hensyn til en vesentlig lengre reaksjonstid for et tog ved plattform enn for et tog som stopper for rødt ute på linjen. Dette skyldes at man oftest ikke lukker dører og gjør klar til avgang før man har fått grønt. (Ved NSB også konduktørens avgangssignal, eventuelt også fra togekspeditør.) Hvis denne prosedyren starter når toget får signal Y, vil togfølgetiden kunne reduseres da man tydelig ser av figuren at det er forholdene ved første signal som er begrensende. Det kan være litt forskjellig praksis ulike steder på dette punkt, så dette er et viktig moment å undersøke ved beregning av togfølgetider ut fra slike stasjoner.

Neste figur viser forholdene inn til en liknende stasjon. Det er her forutsatt trinnvis redusert hastighet inn mot stasjonen og signalavstandene minsker i samsvar med dette.

Fig-13.png

Figur 13: Togfølgediagram for to tog som ankommer en større stasjonen.

Det innerste signalet skifter direkte fra rødt til grønt fordi togene går til hvert sitt spor.

Vi ser at det kritiske punktet er når det andre toget nærmer seg signalet merket C fordi det her er grønt kortest tid. Dette signalet skifter til grønt i det blokkstrekningen EF frigis, og det er altså avstanden fra signal C til F som begrenser togfølgetiden i denne situasjonen.

Kapasitetsøkning ved innføring av flere begrep i signalsystemet

Vi skal her se på den teoretiske kapasitetsøkning ved overgang fra et 3-begrep signalsystem til et 4-begrep system og til “grenseverdien” dynamisk blokk (uendelig mange begrep). Det forutsettes for det meste konstant blokklengde, hastighet, akselerasjon og retardasjon slik at uttrykkene som er utledet i kap. 3.3 kan brukes. For mer nøyaktig beregning av kapasitetsøkningen på en konkret strekning må togfølgetidene finnes mer nøyaktig, f.eks. slik som beskrevet i kap. 3.4.

Strekning uten stopp

Vi ser først på ensartet trafikk uten stopp. Med togfølgetidene fra kap. 3.3.1 ser vi at den teoretiske kapasiteten for et 3-begrep system blir


For et 4-begrep system får vi tilsvarende


Vi ser at kapasiteten øker, men hvor mye den øker avhenger av størrelsen på l + vts i forhold til bremselengden b. Vanligvis er b den dominerende, spesielt ved høye hastigheter.

Den maksimale virkning av overgang fra 3 til 4 begrep får vi når l + vts er neglisjerbar i forhold til b. Togfølgetiden kan altså maksimalt reduseres med 25% ([2 - 1.5] / 2), og kapasiteten øker maksimalt med 33% (2 / 1.5 = 1.33).

Den maksimale reduksjon av togfølgetiden som det er mulig å oppnå, får man ved et kontinuerlig system hvor togene kan kjøre med ned mot en bremselengdes avstand. Ved korte tog vil togfølgetiden kunne bli redusert til bortimot halvparten med et slikt system sammenliknet med et 3-begrep system. Tilsvarende vil kapasiteten kunne øke til bortimot det dobbelte.

Strekning med stopp

Vi ser så på ensartet trafikk med stopp for alle tog. Vi bruker også her tilnærmelsen a= r.

Med togfølgetidene fra kap. 3.3.2 ser vi at den teoretiske kapasiteten for et 3-begrep system er


For et 4-begrep system får vi tilsvarende


Vi ser at kapasiteten øker, men hvor mye den øker avhenger av størrelsen på bremselengden b i forhold til de andre faktorene.

For å få et inntrykk av den maksimale kapasitetsøkning som kan oppnås ved overgang fra 3 til 4 begrep lar vi som ovenfor L + vts være neglisjerbar i forhold til b, og vi lar også oppholdstiden (to) være neglisjerbar selv om dette er en atskillig grovere tilnærmelse. Forholdet (kvotienten) mellom kapasiteten ved h.h.v 4 og 3 begrep blir da


Hvis vi videre gjør den vanlige antagelsen , får vi


Vi får altså at kapasitetsøkningen ved overgang fra 3 til 4 begrep maksimalt blir 10% selv om alle tilnærmelsene vi har gjort har bidratt til å øke dette tallet.

Det eneste tilfellet hvor man kunne tenke seg en høyere kapasitetsøkning i denne situasjonen (ensartet trafikk med stopp), er at blokklengden av en eller annen grunn må holdes vesentlig større enn v2/2r.

Den maksimale reduksjon av togfølgetiden som det er mulig å oppnå, får man ved et kontinuerlig system hvor togene kan kjøre med ned mot en bremselengdes avstand. Den teoretiske kapasiteten i dette tilfellet får man ved å erstatte faktoren 1.5 i K4 med faktoren 1. Denne kapasiteten sett i forhold til kapasiteten ved 3 begrep blir da


Ved samme antagelse som ovenfor (b = v2/2r) ser vi at vi maksimalt kan få


altså maksimalt 20% kapasitetsøkning.

Vi ser altså at ikke bare blir kapasiteten vesentlig lavere på en strekning hvor alle togene har stopp i hovedsporet, men muligheten til å øke kapasiteten ved å innføre mer avansert signalering er også mindre.

Et signalsystem som tillater “kjøring på elektronisk sikt” vil kunne gi noe lavere togfølgetider (og høyere kapasitet) fordi kravet til fri strekning foran det andre toget beregnes kontinuerlig ut fra togets hastighet. Etter som toget bremser, vil således kravet til fri strekning (bremselengden til full stopp) minske, og det andre toget vil kunne komme noe nærmere det første enn med et system hvor togseparasjonen bestemmes av en fast avstand (dimensjonerende bremselengde).

Blandet trafikk

Vi går så over til å se på blandet trafikk, dvs. blanding av tog som har ulike kjøretider over strekningen. Dette skyldes vanligvis ulikt stoppmønster eller ulik topphastighet. På JBVs dobbeltsporstrekninger er det hovedsaklig ulikt stoppmønster som er årsak til differanse i kjøretid, så vi skal derfor konsentrere oss om dette tilfellet. Situasjonen er imidlertid ganske analog når årsaken er ulik topphastighet.

Vi ser først på maksimalt blandet trafikk, dvs. raske og langsomme tog annen hver gang; i praksis vil dette da si stoppende og direkte (eller nesten direkte) tog. Dette er typisk for JBVs dobbeltspor i rushtidene. Et tid-veg diagram for en slik strekning ser da typisk ut som følger:

Fig-14.png

Figur 14: Mer detaljert grafisk rute med blandet trafikk.

Denne figuren er noe mer detaljert enn de figurene som tidligere er vist for denne situasjonen. Vi har her tatt med at frem til bremsepunktet for første stopp (det punkt der bremsing innledes) har man tilnærmet ensartet trafikk. Dette skyldes at ved NSB har (for tiden) de materielltyper som benyttes i persontog omtrent lik yteevne (toppfart, akselerasjon, retardasjon). I mange andre land vil situasjonen ofte være at de stoppende (lokale) togene har vesentlig lavere topphastighet enn de direkte (f.eks 100 mot 160 eller 200 km/h). Figuren ovenfor er ikke helt representativ for slike situasjoner hvis de direkte togene oppnår en hastighet godt over de stoppende togenes toppfart innen bremsepunktet for første stopp.

For å beregne kapasiteten trenger vi da togfølgetiden for delstrekningen fra utgangsstasjonen til første stoppested (t1) og for delstrekningen fra siste stoppested til endestasjonen (t2). Disse to delstrekningene vil bli omtalt som endepartiene av strekningen. Utgangs- og endestasjonen refererer her til strekningen og ikke til togene. Disse togfølgetidene finnes slik som beskrevet i det foregående. Videre trenger vi differansen i kjøretid mellom de to togtypene over hele strekningen (Δt). Den midlere togfølgetid blir da


Den teoretiske kapasiteten blir


Mellom første og siste stoppested vil tidsavstanden mellom togene være merkbart større enn på endepartiene fordi hvert stopp medfører et tidstap på ca. 1 min. eller mer. En endring av signalsystemet vil derfor påvirke t1 og t2, men ikke Δt. Den kapasitetsmessige virkning av å innføre et mer avansert signalsystem blir derfor vesentlig mindre ved blandet trafikk enn med ensartet trafikk uten stopp (i hovedsporet). Som vi har sett i det foregående vil man maksimalt kunne halvere togfølgetiden ved å gå fra et ordinært 3-begrep system til et kontinuerlig system (dynamisk blokk). Siden t1 og t2 selv med et ordinært 3-begrep system vil kunne få verdier på ca. 2 min., mens Δt vil være vesentlig større (10 min. er en passende verdi for JBVs strekninger), ser vi at kapasiteten ikke øker mer enn i størrelsesorden 10% ved overgang fra det helt enkle signalsystem til det mest avanserte system. Det understrekes at vi her ser på maksimalt blandet trafikk, at togene i hver gruppe er like, trafikkerer hele strekningen osv.

Hvis vi kjører flere like tog etter hverandre, blir kapasiteten høyere som tidligere vist. Vi skal nå se på en situasjon hvor det vekselvis kjøres n direkte tog og m stoppende tog. På følgende figur er vist et eksempel med n = 3 og m = 2. Videre er togfølgetidene påført. (For JBVs nåværende dobbeltsporstrekninger kan det i praksis neppe tenkes andre tilfeller enn m=1.)

Fig-15.png

Figur 15: Grafisk rute med puljer på 3 direkte og 2 stoppende tog.

Vi har da n-1 tilfeller med direkte tog etter direkte (togfølgetid td), ett tilfelle med stoppende etter direkte (togfølgetid t1), m-1 tilfeller med stoppende etter stoppende (togfølgetid ts) og ett tilfelle med direkte etter stoppende (togfølgetid t2 + Δt). Den midlere togfølgetid for alle n + m togene blir da


og kapasiteten blir


Som vi har sett i det foregående vil overgang fra 3 til 4 begrep redusere td, t1 og t2 betydelig, ts noe, mens Δt fortsatt vil være uendret. Kapasitetsøkningen ved bedret signalsystem blir altså noe større når trafikken er mindre blandet.


Som hovedkonklusjon vil vi da si at kapasitetsøkningen ved innføring av flere begrep i signalsystemet er meget stor ved ensartet trafikk uten stopp (eller med stopp bare der det er flere spor slik at kapasiteten på stoppestedene er like stor som på linjen).

I andre situasjoner er kapasitetsøkningen mer begrenset, men kan likevel i mange tilfelle være et kostnadseffektivt tiltak.

Innføring av 4-begrep signalsystem som ledd i hastighetsøkning

Vi skal også omtale en spesiell situasjon som har motivert innføring av 4-begrep signalsystem flere steder i utlandet.

Dette gjelder en situasjon hvor man (ofte etter oppgradering av infrastruktur) skal innføre tog med vesentlig høyere hastighet enn tidligere, mens det fortsatt skal gå mange tog med den tidligere toppfarten på strekningen (typiske hastigheter er 200 mot 140/160 km/h). For å tillate en slik hastighetsøkning må man normalt øke blokklengden betydelig, ofte til bortimot det dobbelte. Dette vil føre til vesentlig økte togfølgetider mellom de “langsomme” togene, og dermed redusert kapasitet.

Et godt alternativ er da å beholde blokkdelingen (og dermed signalplasseringen) og isteden innføre et 4. (høyere) begrep. De(n) opprinnelige togtypen(e) vil da betrakte de to høyeste begrepene som “kjør” og kan kjøre med samme togfølgetider som tidligere. Den raskeste togtypen kan imidlertid bare holde toppfart ved høyeste begrep. I tillegg til å være kapasitetsmessig fordelaktig vil en slik endring av signalsystemet ofte bli rimeligere enn nybygging hvis de opprinnelige signalene (og annet utstyr) fortsatt kan benyttes.

I dette tilfellet benyttes altså 4-begrep systemet ikke primært til kapasitetsøkning, men til å muliggjøre kjøring med høyere hastighet samtidig som kapasiteten beholdes ved kjøring med den opprinnelige topphastigheten.

Kapasitet på enkeltspor

Kapasitetsbetraktninger for enkeltspor blir ofte noe mer komplisert enn for dobbeltspor, og slike enkle uttrykk som er utledet for dobbeltspor, synes kanskje heller ikke like nyttige for enkeltspor. Problemstillingen man møter på enkeltsporede strekninger vil oftest være å finne de(t) tiltak som mest effektivt kan øke kapasiteten framfor å beregne den nøyaktige kapasitet for en gitt utforming.

Vi vil begynne med enkle (idealiserte) tilfeller før vi går til mer realistiske situasjoner.

Utseende av en typisk enkeltsporstrekning

Vi vil først gi en kort, skjematisk beskrivelse av hvordan en typisk enkeltsporet strekning ser ut ved JBV.

En enkeltsporstrekning består av stasjoner hvor togene kan møtes (“krysse”) og linjen mellom stasjonene. Følgende figur viser en skjematisk fremstilling av en stasjon og hovedsignalenes plassering.

Fig-16.png

Figur 16: Skjematisk framstilling av en stasjon og hovedsignalenes plassering.

Signalene som angir om et tog får tillatelse til å kjøre inn på stasjonen, kalles innkjørsignaler (I på figuren ovenfor). Disse markerer også stasjonsgrensen, dvs. skillet mellom stasjonen og linjen. Normal plassering er minst 200m utenfor ytterste sporveksel.

Signalene som gir et tog tillatelse til å forlate stasjonen og kjøre ut på strekningen til neste stasjon, kalles utkjørsignaler (U på figuren ovenfor). På tradisjonelle fjernstyrte stasjoner plasseres disse ved (eller noen få meter før) “middelpunktet”, dvs. det punkt hvor to tog på hvert sitt spor vil berøre hverandre. På stasjoner uten fjernstyring kan det være et felles utkjørsignal for alle spor som står rett utenfor ytterste sporveksel.

Strekningen mellom to stasjoner kan være delt i to av et signal, kalt blokkpost eller blokksignal. Dette muliggjør at det kan være to tog etter hverandre på strekningen mellom de to stasjonene, omtrent som på dobbeltspor. Dette gir økt kapasitet hvis det er behov for å kjøre flere tog i samme retning før det kommer et motgående tog.

Alle hovedsignalene på fjernstyrte strekninger har forsignaler plassert på normal forsignalavstand. Forsignalene for utkjørhovedsignalene plasseres normalt på samme mast som foregående innkjørhovedsignal. Stasjoner uten fjernstyring har oftest ikke forsignal for utkjørhovedsignalene.

For å få grønt (kjør) i et hovedsignal kreves det (bl.a.) at strekningen fram til neste hovedsignal er fri for tog. Når et signal viser grønt, kan man si at etterfølgende strekning (minst til neste hovedsignal) er reservert for det første toget som passerer det grønne signalet. En slik reservert strekning kalles en togveg. En blokkstrekning kan aldri inneholde mer enn ett tog eller en togveg om gangen.

For en stasjon som ikke er fjernstyrt (kalles stasjonsstyrt), gjelder følgende regel ved kryssing: Det andre toget skal ikke gis tillatelse til innkjøring før personalet har forvisset seg om at det første toget har stoppet.

Da fjernstyring ble innført, måtte denne regelen endres. Bestemmelsen er nå at det skal gå en viss tid fra det første toget er kommet helt inn på kryssingssporet (innenfor “middelpunktet”) til det andre toget kan få tillatelse til innkjør. Denne tiden kalles kryssingslåsetid (iblant forkortet x-låsetid). Størrelsen avhenger av sporets lengde, og den skal tilsvare noe mer enn normal kjøretid fra sporets begynnelse til toget har stoppet. Ved JBV er denne tiden 50 - 70 sekunder avhengig av sporlengden.

Som vi skal se senere i dette kapitlet, fører denne bestemmelsen til at en kryssing tar ganske lang tid. En mer effektiv stasjonsutforming er en som tillater begge tog å kjøre inn uavhengig av hverandre. Innkjørtogvegene kan da legges fra begge sider samtidig. En slik utforming kalles samtidig innkjøring og er vanlig i mange andre land. Stasjonen må da ha en utforming som hindrer kollisjon selv om et av togene skulle gli noe forbi utkjørhovedsignalet. Dette gjøres ved en sikkerhetssone mellom utkjørhovedsignalet og middelpunktet eller ved sporveksler til et buttspor bak utkjørhovedsignalet. JBV har foreløpig kun et fåtall slike stasjoner, men nye stasjoner bygges nå hovedsaklig av denne type.

I det følgende vil vi ofte bruke begrepet kryssingsspor (x-spor) som er en driftsteknisk betegnelse som ofte brukes om 2- eller få-spors stasjoner.

Dimensjonerende strekningsavsnitt og teoretisk kontra praktisk kapasitet

Dimensjonerende strekningsavsnitt ble også omtalt under dobbeltspor i kap. 2.4 som strekningsavsnittet med lavest kapasitet.

På enkeltspor vil vi bruke betegnelsen strekningsavsnitt om enhver strekning mellom to etterfølgende stasjoner (inkl. stasjonene). Figuren i forrige avsnitt viser altså et helt strekningsavsnitt og deler av to andre.

Det dimensjonerende strekningsavsnitt er fortsatt det strekningsavsnitt med lavest kapasitet innen strekningen vi ser på. Dette begrepet blir mer sentralt for enkeltspor enn for dobbeltspor fordi det nesten aldri er aktuelt å beregne kapasiteten for en enkeltsporstrekning uten mellomliggende stasjoner.

Det blir dermed også viktigere å få med antall strekningsavsnitt eller totalstrekningens lengde når man skal anslå den praktiske kapasitet.

I UIC-kodex 405E (ref. / 1 /) har man sammen med erfaringstall for buffertid (kapasitetsutnyttelse) som omtalt i kap. 2.3, også anført erfaringstall for å ta hensyn til antall strekningsavsnitt. Dette er gjort i form av et tillegg til midlere togfølgetid og buffertid. Den praktiske kapasitet blir da uttrykt


der tt er tilleggstiden som er satt proporsjonal med antall strekningsavsnitt. Som erfaringstall anføres at man kan sette

min.


der a er antall strekningsavsnitt.

Bruk av dette enkle uttrykk for tilleggstiden forutsetter at det er noenlunde jevn tidsmessig avstand mellom kryssingssporene.

På mange norske strekninger er situasjonen slik at bygging av et nytt kryssingsspor på den dimensjonerende delstrekning gir ingen eller liten økning i kapasiteten i følge denne formelen. Dette er en indikasjon på at strekningen er kapasitetsmessig balansert, dvs. at det ikke er noen markerte flaskehalser (i følge denne enkle måte å se det på).


Idealisert tilfelle

Vi ser først på et idealisert tilfelle hvor kryssingssporene er så lange at togene kan krysse ved full hastighet og hvor det ikke er noen signalmessige avhengigheter mellom innkjørtogvegene. Dette vil ofte bli betraktet som dobbeltsporede seksjoner på en (i hovedsak) enkeltsporet strekning.

Den viktigste faktoren for kapasiteten i en slik situasjon er selvsagt kjøretiden over det dimensjonerende strekningsavsnittet på strekningen. Hvis vi gir denne kjøretiden en noe utvidet omfang/betydning, blir det den eneste parameteren når dimensjonerende strekningsavsnitt ikke har blokksignaler. Kjøretiden må da regnes fra forsignalet for utkjørsignalet på den ene stasjonen til hele toget er inne på neste stasjon.

Dermed blir togfølgetiden (t) identisk med kjøretiden over strekningsavsnittet. (Vi har da vært litt upresise med definisjonen av togfølgetid: den refererer ikke noe bestemt sted på strekningen. Under behandlingen av ordinære stasjoner i neste avsnitt gjøres det grundigere.)

Hvis alle tog har tilnærmet lik kjøretid over det dimensjonerende strekningsavsnitt, blir den teoretisk kapasitet over tidsrommet T ganske enkelt


På følgende figur er vist maksimal utnyttelse (teoretisk kapasitet) av et dimensjonerende strekningsavsnitt, som ikke har blokksignaler, i et tilfelle med to togslag med ulike kjøretider.

Fig-17.png

Figur 17: Maksimalt tett trafikk over et strekningsavsnitt med idealiserte stasjoner.

I en slik situasjon må vi beregne den midlere togfølgetid (eller midlere kjøretid i dette idealiserte tilfelle). Dette gjøres ved en veid sum på liknende måte som for blandet trafikk på dobbeltspor, omhandlet i kap. 2.2.

Vi deler da togene inn i klasser eller grupper med lik eller tilnærmet lik kjøretid. Det trengs nå togfølgetider for alle de kombinasjoner av togfølger som finnes i ruteplanen. I dette svært forenklede tilfelle er, som tidligere nevnt, togfølgetiden lik kjøretiden for det første toget, og altså uavhengig av det andre toget. Man trenger ikke en fullstendig ruteplan, men man må ha rekkefølgen av tog fra de ulike grupperinger. Man teller opp antall tilfeller av de ulike kombinasjoner og beregner en midlere togfølgetid:


Her betyr

ni : antall togfølgetider hvor et tog fra gruppe i er først

ti : minste togfølgetid når et tog fra gruppe i er først (= kjøretiden for tog fra gruppe i)

Summen tas over alle tog-grupper. Opptellingen av tilfeller gjøres for et tidsrom av tilstrekkelig lengde til å få med alle aktuelle situasjoner.

Deretter beregnes den teoretiske kapasiteten som før:


Uten blokksignaler på det dimensjonerende strekningsavsnittet blir togfølgetiden tilnærmet den samme uavhengig av hvilken retning det andre toget kjører i. Ved innføring av et blokksignal midt på det dimensjonerende strekningsavsnittet, vil togfølgetiden for to tog i samme retning tilnærmet halveres, og kapasiteten på dette strekningsavsnittet øker med økende puljekjøring på liknende måte som ved blandet trafikk på dobbeltspor (kap. 2.2.3). Det er særlig på strekninger hvor det på visse deler av dagen er hovedsaklig ensrettet trafikk (rushtider) at dette kan komme til praktisk nytte.

Ved slik å øke kapasiteten på det dimensjonerende strekningsavsnitt vil man vanligvis raskt komme i den situasjon at et annet strekningsavsnitt har lavere kapasitet og således blir dimensjonerende. For eventuelt ytterligere å øke kapasiteten må tiltak settes inn på det nye dimensjonerende strekningsavsnitt.

Mer en ett blokksignal mellom to stasjoner på enkeltspor er ytterst sjelden aktuelt.

Med flere togslag med ulik hastighet og stoppmønster kan det være ett strekningsavsnitt som har lengst kjøretid for et togslag, mens det kan være et annet for det andre togslaget. Bruk av blokksignaler og noe puljekjøring kan også medvirke til at det strekningsavsnittet med lengst kjøretid ikke er dimensjonerende likevel. I slike situasjoner er det nødvendig å gjennomføre kapasitetsberegningen for alle potensielt dimensjonerende strekningsavsnitt.

Fra denne helt enkle formuleringen ser man også at redusert kjøretid direkte slår ut på kapasiteten (i tillegg til at det å redusere kjøretiden i seg selv er meget viktig). Dette gir spesielt stor virkning ved oppgradering av strekninger der linjehastigheten er lavere enn maksimalhastigheten for langsomste togtype da man i slike situasjoner får redusert kjøretid for alle tog. På omtrent alle norske strekninger er det mange hastighetsavsnitt hvor selv godstog ikke kan holde sin toppfart. Ved oppgradering til vesentlig høyere hastigheter enn nåværende maksimalhastighet må kapasitetsmessig virkning av økt forsignalavstand også medtas, samt konsekvenser av eventuell økt differanse i hastighet mellom ulike togslag. Når det nå planlegges hastighetsmessig oppgradering av mange strekninger i Norge, er det viktig å få med at dette også betyr økt kapasitet.

Når man vurderer økt hastighet (redusert kjøretid) på en hel banestrekning, vil man se denne kapasitetsøkningen f.eks. ved at hvert tog møter færre motgående tog fordi det er ute på strekningen en kortere tid enn før. Man kan dermed øke frekvensen uten at strekningen belastes hardere kapasitetsmessig.

For enkeltsporede strekninger er det altså som hovedregel slik at økt linjehastighet medfører økt kapasitet, mens det for dobbeltspor normalt er slik at økt linjehastighet medfører redusert kapasitet (jfr. beregningene av optimal kapasitet på dobbeltspor).

Det som ovenfor er sagt, gjelder ved hastighetsøkninger som får konsekvenser for alle tog. En helt annen situasjon er det hvis man skal sprenge inn noen få hurtigere tog mellom mange langsomme tog. En slik situasjon vil kreve en mer omfattende vurdering.

Fullstendig kapasitetsberegning etter UIC 405E

Vi går nå over til å se på en mer reell situasjon med ordinære stasjoner slik som det ble beskrevet i begynnelsen av dette kapitlet. Det er da mer omstendelig å beregne togfølgetider, og det blir flere ulike tilfeller som må behandles. Vi vil her gi en forenklet gjengivelse av framstillingen i UIC 405E anvendt på dette tilfellet.

Utover økt detaljering og nøyaktighet er hovedforskjellen fra forrige avsnitt at det tas hensyn til tidsforbruket som skyldes avhengigheten mellom innkjørtogveiene på ordinære stasjoner. Dette krever tilgang til en mer detaljert ruteplan enn bare rekkefølgen mellom ulike togtyper som vi tidligere har klart oss med.

Midlere togfølgetid

Vi ser da på et strekningsavsnitt hvor vi kaller stasjonene i hver ende for h.h.v. A og B. Videre lar vi a betegne kjøreretningen fra stasjon A til B, og b betegner motsatt retning. Selv med bare en togtype, får vi da fire ulike slag av togfølger; disse kan da benevnes med aa, ab, ba og bb hvor første bokstav betegner kjøreretningen for det første toget og den andre bokstaven for det andre toget. Den midlere togfølgetid over strekningsavsnittet når vi bare har en togtype, blir da


hvor betydningen er

n(xy) : antall togfølgetilfeller med et tog i retning x før et i retning y

t(xy) : togfølgetiden for et tog i retning x før et i retning y

Med flere togtyper må vi som før gruppere togene i grupper med tilnærmet like egenskaper, i denne situasjonen vil egenskaper stort sett bety kjøretid mellom stasjonene A og B. Det må beregnes togfølgetider for alle kombinasjoner som fins i ruteplanen. Man teller opp antall tilfeller av de ulike kombinasjoner og beregner en midlere togfølgetid ved


Her er

nij(xy) : antall togfølgetilfeller med et “i-tog” i retning x før et “j-tog” i retning y

tij(xy) : togfølgetiden for et “i-tog” i retning x før et “j-tog” i retning y

I situasjoner hvor det ikke er opplagt hvilket strekningsavsnitt som er dimensjonerende, må midlere togfølgetid beregnes på denne måten for alle strekningsavsnitt som kan tenkes å være dimensjonerende. Deretter kan man beregne den teoretiske og praktiske kapasitet på samme måte som før, ved hjelp av midlere togfølgetid for det dimensjonerende avsnitt.

Formelen ovenfor kan sammenliknes med formelen i kap. 2.2.1, og vi ser at regnearbeidet er minst firedoblet for enkeltspor.

Vi skal så gå noe inn på beregning av togfølgetider for de fire tilfellene.

Vi vil relatere togfølgetidene til stasjon A. Dette medfører at t(ab) blir stor og t(ba) liten som vist på følgende figur. Hvis man tar utgangspunkt i stasjon B, blir dette motsatt, men den resulterende kapasitet blir selvsagt den samme. Følgende figur viser et eksempel på de 4 ulike togfølgetilfellene.

Fig-18.png

Figur 18: De fire ulike togfølgetilfellene ved enkeltsporet drift.

I det følgende skal vi gå nærmere inn på beregning av disse ulike togfølgetilfellene.

Togfølgetid ved kjøring i samme retning

Beregningen av togfølgetidene for to tog i samme retning, dvs. t(aa) og t(bb), blir som for dobbeltspor. Følgende figur viser de aktuelle tilfeller. Figuren viser kun hovedsignaler, ikke forsignaler.

Fig-19.png

Figur 19: Togfølgetider ved kjøring i samme retning på enkeltspor: øverst: stasjoner uten mellomliggende blokkpost, midten: blokkpost, avstanden fra st. A til blokkpost er dimensjonerende, nederst: blokkpost, avstanden fra blokkpost til st. B er dimensjonerende.

Hvis ingen av togene stopper på noen av stasjonene (eller mellom dem) og hastigheten (v) antas konstant, kan togfølgetiden i disse tilfellene uttrykkes


Her betegner som før L toglengde (for første tog) og ts siktavstand (tidsmessig). Videre er bf forsignalavstanden foran det bakerste signalet (signalet foran tog 2), og bl betegner blokklengden på linjen. I tilfellet uten blokkpost er den sistnevnte avstanden fra utkjør til neste stasjons innkjør. I tilfellene med blokkpost er den enten avstanden utkjør til blokkpost eller blokkpost til innkjør.

Ved stopp ute på linjen må uttrykket økes med leddene (v/r) + (v/a) + to for hvert stopp slik som for dobbeltspor (kap. 3.3.2). Hvis tog 2 har rutemessig stopp på stasjon A, erstattes (bf / v) + ts av reaksjonstid ved avgang fra stasjon, samt tidstillegg for akselerasjon.

For enkeltspor vil man ofte bruke de rutemessige kjøretidene mellom stasjonene for å finne togfølgetidene. Man må da legge til et anslag for (L + bf) / v + ts.

Normalt er bf av størrelsesorden v2/r, mens bl er betydelig større. Togfølgetidene for to tog i samme retning er derfor normalt mye større for enkeltspor enn for dobbeltspor. Selvfølgelig er det teknisk mulig å signalere et enkeltspor slik at togfølgetiden for to tog i samme retning blir like lav som på et dobbeltspor, men dette er sjelden aktuelt i praksis.

Togfølgetid ved bytte av retning

Ved beregning av togfølgetiden for to tog i hver sin retning, må vi også ta med tidsforbruket ved kryssingen. Togfølgetidene referert stasjon A kan da uttrykkes



hvor

ta er kjøretiden for tog 1 fra stasjon A til B

tb er kjøretiden for tog 2 fra stasjon B til A

tk,X er tidsforbruket ved kryssing på stasjon X.

Kjøretidene ta og tb avhenger av avstanden mellom stasjonene, linjehastigheten og togenes egenskaper. Vi går for øvrig ikke nærmere inn på beregning av disse kjøretidene da de hovedsaklig kan hentes fra ruteplanen.

Tidsforbruket ved kryssingen avhenger av stasjonens utforming og av den tidsmessige forskjellen mellom togenes ankomst til stasjonen. For ordinære stasjoner (med kryssingslåsetid) er den gunstigste situasjonen at det andre toget er like foran (dvs. på siktavstand til) forsignalet for innkjør i det kryssingslåsetiden utløper. I denne situasjonen er tidsforbruket ved kryssingen minst, og denne situasjonen brukes derfor ved kapasitetsberegningen. I kap. 4.5 behandles tidsforbruket ved en kryssing mer i detalj.

I UIC 405E brukes to ulike formler for tidsforbruket ved en kryssing, avhengig av om det andre toget skal stoppe på den stasjonen som innleder strekningsavsnittet eller ikke.

Når tog 2 skal passere stasjonen det krysses på, må tog 1 komme inn på stasjonen og kryssingslåsetiden utgå før tog 2 er på siktavstand til FS innkjør, dvs


der

tx kalles togvegleggingstid, utløsetid, blokkbetjeningstid

tiu er kjøretiden fra innkjør forsignal til utkjør hovedsignal

ts er siktavstanden (i tid)

Når tog 2 også skal stoppe på kryssingsstasjonen, angis

tk = tx + “avgivelse og opptagelse av avgangssignal”

tx avhenger sterkt av stasjonsutformingen: ordinær stasjon med kryssingslåsing eller stasjon som tillater samtidig innkjøring. For ordinære stasjoner vil denne tiden videre avhenge sterkt av hvilket tog som i ruteplanen kjører først inn på kryssingsstasjonen. Når tog 1 kjører først inn på kryssingssporet, kommer kryssingslåsetiden (50 - 70s) med i tx og er det dominerende ledd. Når tog 2 kjører først inn på kryssingssporet, blir tx nærmest neglisjerbar på fjernstyrte stasjoner med magasinert togveg (den vanligste situasjonen).

Tiden til “avgivelse og opptagelse av avgangssignal” kan bli merkbar på større stasjoner med manuelt avgangssignal (fra togekspeditør til togfører), men for ordinære fjernstyrte kryssingsspor blir dette et nærmest neglisjerbart ledd (som typisk verdi for norske forhold kan antydes 5s for tog uten passasjerutveksling og 15s med passasjerutveksling).

Virkning av samtidig innkjøring på stasjoner

Som tidligere nevnt, kan stasjoner som tillater samtidig innkjøring, avvikle kryssinger med vesentlig mindre tidstap enn ordinære stasjoner. For å kunne se virkningen av denne mer effektive stasjonsutformingen på beregningene i det foregående, gjør vi en del forenklinger: Vi ser på det enkleste tilfelle med lik kjøretid for alle tog i begge retninger (ta = tb) og annet hvert tog i hver sin retning, dvs. n(aa) = n(bb) = 0 og n(ab) = n(ba). Videre forutsetter vi at begge stasjonene er like, og at tog 1 kjører først inn på kryssingssporet i halvparten av kryssingene på de to stasjonene. Vi neglisjerer også tiden til “avgivelse og opptagelse av avgangssignal” (dvs. tk er tilnærmet null i halvparten av tilfellene). Da får vi


hvor tk kun betegner den fulle verdien som typisk settes til ca. 3 min. i ruteplanen for en kryssing mellom to persontog på en ordinær stasjon. For en stasjon med samtidig innkjør er tidstapet tilnærmet null hvis begge tog har rutemessig stopp, mens det for passerende tog kan antydes ca 0.5 min. (tidstillegg pga. retardasjon og akselerasjon).

For tilfellet med to stoppende tog blir den teoretiske kapasiteten med ordinære stasjoner

,


mens det med samtidig innkjøring blir


Som vi ser er kapasitetsgevinsten ved overgang til stasjoner med samtidig innkjør større jo kortere kjøretiden mellom stasjonene er.


Eksempel: Vi skal anslå kapasitetsøkningen ved overgang til stasjoner med samtidig innkjøring ved å benytte de samme tilnærmelsene som ovenfor. Vi setter da kjøretiden mellom stasjonene til 6 min. som er rimelig representativt for JBVs nærtrafikkstrekninger og også for deler av IC-strekningene. Tidstapet ved kryssing på en ordinær stasjon settes vanligvis til 3 min. Den teoretiske maksimalkapasiteten uten samtidig innkjøring blir da

[tog/time],


mens vi med samtidig innkjøring får

[tog/time]


Med erfaringstallene fra UIC 405E og hvis antall strekningsavsnitt settes til 8 i dette eksempelet, får vi for den praktiske kapasitet uten samtidig innkjøring

[tog/time]


Tilsvarende får vi med samtidig innkjøring

[tog/time]


Selv om det her er gjort mange forenklinger, er disse forholdsvis nær vanlig forekommende situasjoner, og resultatene burde derfor være rimelig representative.

Mer detaljert framstilling av tidsforbruket ved en kryssing

Vi vil i dette avsnittet beskrive tidsforbruket ved kryssing mer i detalj for et ordinært kryssingsspor og for et som tillater samtidig innkjør. Det virkelige tidsforbruket ved en kryssing sammenliknet med situasjonen på dobbeltspor vil her komme tydeligere fram. Likeledes vil man se fordeler ved samtidig innkjør ut over bortfall av x-låsetiden.

Fremstillingen her bygger på ref. / 4 / som omhandler tidsgevinsten ved samtidig innkjøring. Beregningene der gjelder Asper stasjon, som ligger omtrent midt mellom Kløfta og Jessheim stasjoner, på strekningen Lillestrøm - Eidsvoll. Asper er JBVs (NSBs) første 2-spors kryssingsspor med samtidig innkjør, tatt i bruk i 1984. Figurene i dette avsnittet er hentet fra samme artikkel.

De fleste beregningene her er gjort for NSBs vanlige nærtrafikktog (type 69). Først vises et detaljert tid-veg diagram over hvordan en kryssing forløper ved ordinær utforming (med kryssingslåsing) og ved samtidig innkjør.

Fig-20.png

Figur 20: Tid-veg diagram for kryssing mellom to nærtrafikktog uten rutemessig stopp.

I den viste situasjonen ankommer togene omtrent samtidig til kryssingsstasjonen (Asper på figuren). Med ordinær utforming av denne påføres begge tog et betydelig tidstap (2 - 3 min. pr. tog) sammenliknet med situasjonen uten kryssing eller i forhold til dobbeltspor. Det samlede tidsforbruket er omtrent det samme som hvis kryssingen hadde skjedd på en av nabostasjonene (kryssing på Jessheim er vist på figuren). Hvis derimot kryssingsstasjonen tillater samtidig innkjøring, blir tidstapet bare ca. 0.5 min. pr. tog (og kunne vært redusert ytterligere ved bruk av repeterbaliser for ATS-systemet). Det er i denne situasjonen (to tog samtidig klar til avgang fra hver sin stasjon) at man forventer størst nytte av et nytt kryssingsspor mellom disse stasjonene, men det er også i denne situasjonen at tidsforbruket ved kryssing er størst for en tradisjonell stasjon. Dette skyldes at togene kommer samtidig til kryssingsstasjonen, mens det optimale er en differanse på 2 - 4 min. (avhengig av togslag).

Den forrige figuren viser tidsforløpet for en spesifikk situasjon: begge tog starter samtidig fra nabostasjonene på hver side av kryssingsstasjonen. For å få en oversikt over det samlede tidsforbruket for begge tog i alle situasjoner må tidsforbruket beregnes for ulike situasjoner når det gjelder starttid. Et eksempel på dette er vist i neste figur. Differansen mellom tidspunktet når det ene toget starter fra nabostasjonen i nord (Jessheim på figurene) og tidspunktet når det andre toget starter fra nabostasjonen i syd (Kløfta på figurene) kaller vi for starttidsforskyvningen (Δt). Foregående figur viser altså det detaljerte kryssingsforløp når Δt = 0. Starttidsforskyvningen angir også hvor på strekningen togene ville møtes hvis det var dobbeltspor. (Med strekningen menes den totale strekningen vi her ser på; Kløfta - Jessheim på figurene.) På neste figur vises det samlede tidsforbruket for de to togene som funksjon av starttidsforskyvningen.

Fig-21.png

Figur 21: Samlet tidsforbruk (T) som funksjon av starttidsforskyvningen (Δt) for to nærtrafikktog uten rutemessig stopp.

Denne figuren er egentlig sammensatt av to deler. I høyre halvdel vises forløpet av samlet tidsforbruk (T) som funksjon av starttidsforskyvningen (Δt) for følgende tilfeller:

kryssing på Jessheim (strek-punktert linje)
tradisjonell kryssing på Asper hvor toget fra Kløfta kjører først inn og i avvik (heltrukken linje)
kryssing med samtidig innkjør på Asper hvor toget fra Kløfta kjører i avvik (stiplet linje).

Disse kurvene er ført noe over i venstre halvdel av diagrammet for å vise hvordan tidsforbruket blir hvis denne signalering og sporbruk beholdes når bytting av togrekkefølge og sporbruk ville gitt et raskere forløp.

I venstre halvdel av figuren vises på samme måte kurvene for:

kryssing på Kløfta
tradisjonell kryssing på Asper hvor toget fra Jessheim kjører først inn og i avvik
kryssing med samtidig innkjør på Asper hvor toget fra Jessheim kjører i avvik.

Som referanse vises også tidsforbruket ved dobbeltspor (heltrukken linje).

Av et slikt diagram ser man tidsforbruket for ulike stasjonsutforminger, og de kan sammenliknes med tidsforbruket ved dobbeltspor og ved kryssing på nabostasjon.

For det konkrete tilfellet som figurene her er hentet fra, ser man at bygging av et nytt kryssingsspor (Asper) gir praktisk talt ingen tidsgevinst hvis det utformes på tradisjonell måte (med kryssingslåsing). Dette skyldes at avstanden mellom de opprinnelige stasjonene her er så kort at det samlede tidsforbruket ved kryssingen kan bli omtrent like stort som kjøretiden over den opprinnelige strekningen (uten det nye kryssingssporet). Hva slags utbyggingstiltak som gir best effekt i ulike situasjoner, omtales noe mer i kap. 4.7.

I ref. / 4 / vises også tilsvarende figurer for kryssing mellom to nærtrafikktog med stopp på strekningen og for to godstog. Dessuten gis en mer detaljert forklaring av hvorfor de ulike kurvene ser ut som de gjør.

En stasjonsutforming som tillater samtidig innkjøring, har også enkelte andre positive virkninger, bl.a. blir det noe enklere for toglederne å treffe optimale beslutninger. Også dette omtales nærmere i nevnte artikkel.

Effekt av stive ruter

Ved bruk av stive ruter (dvs. avganger på faste minutt-tall) på enkeltspor vil kryssinger mellom de tog som har faste ruter opptre på de samme stasjoner i hver “syklus”. Disse stasjonene får da vesentlig flere kryssinger enn de øvrige på strekningen. Hvis alle togene på strekningen har stive ruter, får de faste kryssingspunktene alle kryssingene rutemessig, og de øvrige kryssingsspor blir bare brukt ved omlegging av kryssinger pga. forsinkelser.

I slike situasjoner med faste kryssingspunkter er det viktig at kryssingene kan avvikles mest mulig effektivt på disse stasjonene, og disse bør derfor ofte bygges ut til en høyere standard enn de øvrige hvis det faste mønster forventes beholdt i mange år framover.

En slik utbygging av de faste kryssingspunktene har vanligvis en stor betydning for punktligheten på strekningen. Men skjematiske beregninger som med UIC 405E tar ikke hensyn til slike faste kryssingspunkter som framkommer ved stive ruter.

Kapasitetsforbedring på slike faste kryssingspunkter kan ha vesentlig bedre virkning på punktligheten enn den formelle kapasitetsøkningen skulle tilsi. Virkningen kommer bedre fram ved å se detaljert på tidsforbruket på de faste kryssingspunktene slik som vist i forrige avsnitt eller ved bruk av simuleringsmodeller for hele strekningen.


Kapasitetsøkende tiltak på enkeltspor

Vi vil her gi en kort gjennomgang av aktuelle kapasitetsøkende tiltak på enkeltspor. Kun banetekniske tiltak blir omtalt.

De banetekniske tiltak som er aktuelle for å øke kapasiteten på en enkeltsporet strekning, kan grovt grupperes i tre:

nye kryssingsspor
forbedret utforming av kryssingssporene
økt hastighet

Den første spørsmålsstillingen man bør se på er om det bør bygges nye kryssingsspor eller om man bør effektivisere de man har. Jo lengre kjøretid det er mellom stasjonene, desto større nytte får man av nye kryssingsspor. Jo kortere kjøretid det er mellom stasjonene, desto større nytte får man av effektivisering av de eksisterende stasjonene. For et konkret tilfelle må man se på nytte og kostnad ved de ulike alternativene. Som en grov hovedregel for JBVs strekninger kan man si at på nærtrafikk- og intercity-strekninger vil forbedring av de eksisterende kryssingssporene være mest fordelaktig. Bygging av nye stasjoner av tradisjonell type (uten samtidig innkjør) vil bare være aktuelt på de svakest trafikkerte strekningene.

Et annet alternativ for å redusere den tidsmessige avstanden mellom kryssingssporene er økt hastighet. Mange steder i Norge er det også muligheter for direkte innkorting av linjen mellom to stasjoner i tillegg til hastighetsøkning. Ut fra en isolert kapasitetsmessig betraktning vil økt hastighet sjelden kunne konkurrere med nye kryssingsspor eller ombygging av de eksisterende. Men som et kombinert tiltak som både gir reduserte (netto) kjøretider og økt kapasitet, vil det mange steder være aktuelt.

De forhold ved stasjonsutformingen som har kapasitetsmessig betydning er:

samtidig innkjøring
sporveksler som tillater høyere hastighet i avvik
sporlengde

Av disse er samtidig innkjøring det klart viktigste.

Når en stasjon tillater samtidig innkjør, øker effektiviteten (= reduseres tidstapet ved kryssingen) med økende sporlengde (forutsatt at signalering og sporvekslenes standard “følger med”). For en stasjon med kryssingslåsing betyr økt sporlengde bare at lange godstog kan krysse også på denne stasjonen, men for korte tog blir det ingen forbedring; tvert imot kan man risikere at tidsforbruket ved kryssingen øker fordi kryssingslåsingstiden økes hvis sporforlengelsen er betydelig.

Sporvekslenes maksimale hastighet (i avvik) bør normalt økes med økende sporlengde og med økende antall kryssinger. Men det er sjelden aktuelt å gå opp til linjehastighet.

Hvis et kryssingsspor er så langt at det er aktuelt å dele det i to blokkstrekninger (lengde minst to bremselengder for dimensjonerende tog) og praktisere “alltid høyrekjøring” vil man ofte bruke betegnelsen dobbeltsporet seksjon istedenfor kryssingsspor. Ved en slik utforming kan to tog i prinsippet (dvs. ved samtidig ankomst) krysse uten annen hastighetsreduksjon enn den som skyldes avvikende sporveksel.

For utbygging av en konkret strekning må nytte og kostnad for ulike tiltak vurderes. Det kan ikke sies så mye generelt om hvilke tiltak som er mest kostnadseffektive utover et par momenter:

På alle tett trafikkerte strekninger bør ombygging av stasjonene til samtidig innkjøring vurderes. Dette vil ofte være et av de mest kostnadseffektive tiltak.
Det vil normalt lønne seg å bygge ut eventuelle faste kryssingspunkter først og ofte til en høyere standard enn øvrige kryssingsspor. Man må i den sammenheng være klar over at ved fremtidig hastighetsøkning på en strekning med stive ruter flytter de faste kryssingspunktene seg. Man bør derfor vurdere framtidige ruteopplegg, materielltyper og hastighetsøkninger før man går til en omfattende utbygging av faste kryssingspunkter.

Togenes punktlighet

Kapasitetsmessige konsekvenser av tekniske feil

Vi skal her se hvordan ulike tekniske feil - på materiell eller infrastruktur - påvirker en streknings kapasitet. Betraktningene vil hovedsaklig være kvalitative eller med henvisning til tidligere omtalte metoder. Vi tar for oss en strekning med en start- og en sluttstasjon, men togene kan eventuelt trafikkere en lengre strekning enn den vi ser på.

Forsinkelser som oppstår på eller før den første stasjonen på den strekningen vi betrakter, fører ikke til redusert kapasitet på denne strekningen fordi de øvrige togene kan gå uavhengig av det forsinkede toget. Riktignok vil det forsinkede toget - når det går ut på strekningen - normalt føre til forsinkelse også for andre tog; dette skal vi behandle i kap. 5.2.4.

Vi skal her se litt nærmere på ulike typer tekniske feil som kan oppstå underveis på den strekningen vi betrakter.

Vi ser først på feil ved materiellet (toget) som vi grovt vil gruppere i tre kategorier:

Kortvarig feil.Vi tenker her på en feil som kan rettes på stedet, uten at det går så lang tid at man setter i gang omdisponeringer som forbikjøring o.l.
Varig feil, men toget kan kjøre videre.Dette gjelder feil som redusert trekk-kraft (en motor ute av bruk), redusert toppfart o.l.
Langvarig feil, toget kan ikke kjøre. Dette medfører at sporet som toget står på, ikke kan brukes før feilen er rettet eller toget fjernet. Konsekvensene blir da de samme som om sporet er ute av bruk pga. feil i infrastruktur, punkt b) eller c) nedenfor.

For feil ved infrastrukturen har vi også gjort en liknende gruppering i tre kategorier:

Kortvarig feil. Dette gjelder også feil som ikke varer så lenge at man setter i gang omdisponeringer som forbikjøring o.l. Det kan dreie seg om feil som kan utbedres av togpersonalet eller feil som bare viser seg nå og da (f.eks. kortvarig signalfall, manglende kontroll på sporveksler).
Varig redusert kapasitet. Det tenkes her på en situasjon som varer lenge, men feilen er ikke slik at strekningen er blokkert. Det kan dreie seg om saktekjøringer, et kryssingsspor som ikke kan brukes, eller et spor ute av bruk på strekninger med flere spor.
Total stopp av trafikk. Alle spor på en strekning er sperret slik at trafikken opphører inntil feilen er rettet.

Det som ovenfor er kalt kortvarig feil, er feil som primært bare rammer ett tog, men som så forplanter seg til andre tog (sekundære forsinkelser). Denne situasjonen behandles matematisk i kap. 5.2 (forsinkelsesforplantning).

Situasjonen med total stopp av trafikk tilsvarer jo at kapasiteten er null, og det er derfor ikke aktuelt å studere kapasiteten nærmere i denne situasjonen.

Det gjenstår da et mangfold av situasjoner med redusert kapasitet hvor man kan utføre kapasitetsberegninger. Disse omfatter punkt b) under materiell og punkt b) under infrastruktur (som også inkluderer deler av punkt c) under materiell). Vi skal her omtale endel av disse situasjonene litt nøyere:

Varig materiell-feil, men toget kan kjøre videre. På JBVs dobbeltsporstrekninger, som er så korte, vil det normalt ikke foretas forbikjøringer selv om et tog går saktere enn det skulle. Dermed vil også dette tilfellet kunne dekkes av teorien for forsinkelsesforplantning. Dette vil også til en viss grad gjelde for enkeltsporstrekninger.

Det kan alternativt gjøres en kapasitetsberegning hvor det langsommere toget behandles som en egen tog-gruppe. Ved de samme metoder som omtalt i de foregående kapitler, vil man da få et tallmessig uttrykk for den reduserte kapasiteten.

Saktekjøring for alle tog over en del av strekningen man ser på. Dette kan skyldes banemessige svakheter (solslyng f.eks.), problemer med signalanlegget som medfører at togene må få telefonisk ordre om å passere signal i stopp (det må da kjøres i max 40 km/h til neste signal), eller vedlikeholdsarbeid.

Som påvist i kap. 3.5, fører saktekjøring alltid til redusert togfølgetid på det aktuelle sted. For dobbeltspor fører dette normalt også til redusert togfølgetid over strekningen som helhet. For enkeltspor fører saktekjøring normalt til at dette strekningsavsnitt blir dimensjonerende. I begge tilfeller kan metodene i det foregående benyttes til å beregne kapasiteten i denne situasjonen med saktekjøring slik at man kan tallfeste reduksjonen i kapasitet. For situasjonen med kjøring på telefonisk ordre fra togleder må det også tillegges en betydelig tid for “avgivelse og opptak av avgangssignal”.

Et kryssingsspor ute av bruk. Vi tenker her på en situasjon hvor bare ett spor på stasjonen kan brukes. Dette kan skyldes at en sporveksel ikke kan legges over, et spor ute av bruk pga. feil, vedlikehold o.a. Det kan altså ikke utføres kryssinger på denne stasjonen.

Hvis totalstrekningen vi ser på, er noenlunde kapasitetsmessig balansert, fører dette til at lengden av dimensjonerende strekningsavsnitt blir bortimot fordoblet, og den teoretiske maksimalkapasiteten blir bortimot halvert. Dersom det er stor forskjell mellom de ulike strekningsavsnitt, blir kapasitetsreduksjonen ved en slik feil mindre (hvis ikke kryssingssporet som er ute av bruk, i utgangspunktet lå inntil dimensjonerende strekningsavsnitt). Reduksjonen i den praktiske kapasitet blir noe mindre fordi antallet strekningsavsnitt da inngår i beregningen.

Med mindre kapasitetsutnyttelsen i utgangspunktet var forholdsvis lav (under 50%), vil en slik feil føre til at forsinkelsene stadig øker etter som tiden går. Det vil da bli en “kø” av tog på hver side av flaskehalsen. Dette medfører vanligvis økende puljekjøring, noe som igjen hever kapasiteten en del, slik at forsinkelsen pr. tog stabiliseres.

Redusert sporantall på flerspors strekninger. Ved dobbeltspor fører blokkering av et spor til at man får trafikk i begge retninger på det gjenværende sporet, altså en enkeltsporet seksjon med dobbeltspor på begge sider. På strekninger med mer enn to spor fører blokkering av et spor normalt til at man får blandet trafikk i samme retning på et av de gjenværende spor, mens det tidligere var (mer) ensartet trafikk på dette sporet. I begge tilfeller får man en dramatisk kapasitetsreduksjon for totalstrekningen (alle spor sett under ett). Denne kan beregnes ved å beregne kapasiteten for den delstrekningen som utgjør flaskehalsen. Også i disse situasjonene vil det ofte bli en kø av tog på hver side av flaskehalsen, slik at man får en økende grad av puljekjøring og dermed noe høyere kapasitet.

For dobbeltspor vil vi også nevne de viktigste faktorene for kapasiteten når ett spor er sperret:

lengden av den enkeltsporede seksjonen, dvs. avstanden mellom to sporsløyfer; denne må inkludere vekselsonene fra siste signal før den enkeltsporede seksjonen.
om uavhengig togveglegging er mulig; hvis ikke, må den enkeltsporede seksjonen regnes som en blokkstrekning lengre enn den egentlig er.
hastighet over sporveksel i avvik.

Hvis vi tar utgangspunkt i en gitt kapasitetsutnyttelse på den i utgangspunktet dobbeltsporede strekning, spiller også graden av ensartethet (hvor blandet eller ensartet trafikken er) inn. For en strekning med ensartet trafikk eller utstrakt puljekjøring blir det flere tog som skal passere flaskehalsen enn for en strekning med i utgangspunktet maksimalt blandet trafikk. Dette skyldes at den enkeltsporede delstrekningen normalt er så kort at ulikhet i togslag gir vesentlig mindre ulikhet i kjøretid over denne delstrekningen enn over totalstrekningen. Jo flere tog pr. tidsenhet som skal trafikkere den enkeltsporede delen, desto høyere kapasitetsutnyttelse og desto mer spredning av forsinkelsene.

Når man skal vurdere en streknings kapasitet i forbindelse med nyanlegg eller utbygginger, kan det være aktuelt å ta med kapasitet i feilsituasjoner og ved vedlikehold slik som nevnt ovenfor. Hvis trafikken skal avvikles greitt også i slike feilsituasjoner, kreves overkapasitet ved normal drift, dvs. lavere kapasitetsutnyttelse.

For enkeltspor vil mange feilsituasjoner selvsagt føre til full stopp i trafikken, så slike betraktninger er da mindre aktuelle enn for dobbeltspor.

Teori for forsinkelsesforplantning

Vi ser her på konsekvensene av enkeltfeil. Det forutsettes da en initiell forsinkelse for bare ett tog, og man beregner hvordan denne forplanter seg til andre tog (sekundære forsinkelser, følgeforsinkelser). Det antas videre at det ikke oppstår nye primærforsinkelser før virkningene av den forrige har dødd ut.

Disse feiltypene omfatter det vi i forrige avsnitt kalte kortvarige feil på materiell eller infrastruktur. Videre vil også varige feil på materiell som ikke hindrer toget i å kjøre, kunne dekkes her - i hvert fall for dobbeltspor. Den initielle forsinkelsen må da settes til den forsinkelse dette toget har ved strekningens slutt. En initiell forsinkelse kan også oppstå av andre grunner enn rent tekniske, f.eks. ved forlenget oppholdstid pga. stor trafikk.

Det er også en forutsetning at alt fungerer normalt etter at den første forsinkelsen har oppstått; både tekniske forhold, samt kjøretider, oppholdstider o.l.

Vi behandler først situasjonen med en primærforsinkelse som oppstår ute på en strekning hvor det ikke regnes med noen mulighet til forbikjøring. Deretter ser vi på konsekvensene av forsinkelser på eller før den første stasjonen på strekningen vi betrakter.

Dobbeltspor med ensartet trafikk

Teorien som presenteres her, er i hovedsak hentet fra ref. / 5 /. Vi ser da på en strekning med ensartet trafikk hvor togene trafikkerer med en rutemessig togfølgetid tr (konstant eller midlere). Denne må være større enn den teknisk minste togfølgetid for strekningen, tt. Differansen mellom disse kalles buffertiden, tb:


og uttrykker den buffer man har mot at forsinkelse fra et tog skal spre seg til neste tog.

Forsinkelser betegnes p og indekseres med tognummer hvor det toget som initielt blir forsinket, har nr. 1. Vanligvis er den initielle forsinkelse p1 større enn buffertiden tb slik at forsinkelsen spres til neste tog. Togene kjører da med den teknisk minste togfølgetid tt slik at hvert tog får en forsinkelse som er tb mindre enn det forrige:


Slik reduseres forsinkelsen fra tog til tog inntil den blir null. Vi kaller antall tog som berøres av sekundære forsinkelser for j, og det siste toget som blir påvirket av den initielle forsinkelse p1 har da forsinkelsen


hvor ε er et tall mellom 0 og 1.

Et eksempel med j = 3 er vist i følgende figur.

Fig-22.png

Figur 22: Forsinkelsesforplantning ved ensartet trafikk (j=3).

Summen av alle forsinkelser, som man får pga. av den initielle forsinkelsen p1, er da summen av disse (j+1) forsinkelsene:


Vi har her brukt uttrykket for summen av en aritmetisk rekke. Uttrykket ovenfor omformes videre ved å sette inn pj+1 = εtb og j = (p1/tb) - ε:


Dette kan omformes til


Siden ε ligger i intervallet mellom 0 og 1 har vi alltid


Siden vi bare ser på situasjoner hvor p1>tb, kan vi derfor med god tilnærmelse sette


Dette er et mye enklere uttrykk å behandle selv om det er en svak underestimering av den samlede forsinkelse som p1 fører til. Tilnærmelsen, som her er gjort, er ekvivalent med å sette pj+1 = 0; dvs. forsinkelsen på det siste toget som blir berørt, neglisjeres.

I uttrykket ovenfor er (p1/tb +1) det samme som antall forsinkede tog (= j+1), mens p1/2 er den gjennomsnittlige forsinkelse for alle de forsinkede togene. Uttrykket for den samlede forsinkelse får da den enkle tolkning:

sum forsinkelse = antall forsinkede tog * gjennomsnittlig forsinkelse.

Siste del av uttrykket ovenfor kalles forplantningsfaktoren for forstyrrelser (y):


Dette uttrykket er utledet under forutsetningen at det blir følgeforsinkelser, dvs. at p1>tb. For mindre verdier av p1 har vi derfor y(p1) = 1.

Med denne forplantningsfaktoren kan uttrykket for den summerte forsinkelse tilnærmet uttrykkes som


Eksempel: En av de få norske strekninger med tett ensartet trafikk er fellesstrekningen for T-banene i Oslo. Vi skal her beregne forsinkelsesforplantningen på denne strekningen i og utenfor rushtid. Vi skal regne med initialforsinkelser som oppstår inne på fellesstrekningen, av størrelse 2 og 5 min, dvs. p1 = 120, h.h.v. 300s.

Den teknisk minste togfølgetid for denne strekningen settes vanligvis til 90s.

Utenom rushtid kjøres 4 tog pr. kvarter, dvs. (gjennomsnittlig) rutemessig togfølgetid er 225s. Buffertiden blir

Med en initialforsinkelse på 2 min er p1 < tb og y(p1) = 1, dvs. det blir ingen forplantning av forsinkelser.

Med en initialforsinkelse på 5 min blir forplantningsfaktoren


Totalforsinkelsen blir da 8 min, dvs. følgeforsinkelsen er 3 min.

I rushtiden har det blitt kjørt et varierende antall tog gjennom tidene. Vi vil her se på en situasjon med ett innsatstog fra hver bane, dvs. 8 tog pr. kvarter. Dette gir en rutemessig togfølgetid på 112s, og buffertiden blir da


Dette gir en vesentlig kraftigere forplantning av forsinkelser. Med en initialforsinkelse på 2 min blir forplantningsfaktoren


Totalforsinkelsen blir dermed ca. 6.5 min, dvs. at følgeforsinkelsen er 4.5 min, mens det utenom rushtiden ikke ble noen følgeforsinkelse i det hele tatt med en slik initialforsinkelse.

Med en initialforsinkelse på 5 min blir forplantningsfaktoren


Totalforsinkelsen blir dermed ca. 36.5 min, dvs. at følgeforsinkelsene samlet er 31.5 min, mens det utenom rushtiden ble en samlet følgeforsinkelse på 4.5 min. med en slik initialforsinkelse. Følgeforsinkelsene (forårsaket av en initialforsinkelse på 5 min.) blir altså 7 ganger så store når togantallet dobles.

Vi har ovenfor regnet med den samme teknisk minste togfølgetid på 90s både i og utenfor rushtid. Denne togfølgetiden forutsetter en oppholdstid på 20s. Oppholdstiden vil selvsagt variere noe fra tog til tog og fra stasjon til stasjon, men den vil gjennomgående være lengre i rushtiden, og den vil oftest øke ytterligere ved forsinkelser. Vi vil her se på konsekvensene av en økning av oppholdstiden til 30s på den dimensjonerende stasjon på strekningen. Dette er ingen urealistisk verdi ved stor av- og på-stigning. Den teknisk minste togfølgetiden blir da 100s og buffertiden bare 12s. Med en initialforsinkelse på 5 min blir forplantningsfaktoren


Dette betyr altså at den initielle forsinkelse fører til en total forsinkelse som er 13 ganger så stor. Totalforsinkelsen blir dermed ca. 65 min, dvs. at følgeforsinkelsene samlet er 60 min. En økning av den teknisk minste togfølgetiden fra 90 til 100s fører altså til nesten en dobling av følgeforsinkelsene i dette tilfellet. Årsaken er selvfølgelig at man har en svært høy kapasitetsutnyttelse med en tilsvarende liten buffertid.

I det siste tilfellet er antall tog som berøres av følgeforsinkelser


Med 8 tog pr. kvarter vil det si at alle tog blir forsinket i de neste 47 minuttene. I praksis vil dette som oftest bety resten av rushtiden.

Dobbeltspor med blandet trafikk

I ref. / 5 / behandles kun situasjonen hvor mange langsomme tog (godstog) regelmessig kjøres forbi av noen få raske tog (ekspresstog). Denne situasjonen er helt uaktuell for nåværende norske dobbeltsporede strekninger og sannsynligvis også lite relevant for planlagte strekninger.

Derfor vil vi her modifisere uttrykket for ensartet trafikk til å dekke situasjonen på norske dobbeltspor.

Vi ser da på en situasjon hvor det vekselvis kjøres n raske (direkte) og m langsomme (stoppende) tog. Figur 15 viser et eksempel på en slik situasjon. Togene som inngår i en pulje med langsomme tog og den etterfølgende pulje med raske tog vil vi her kalle en gruppe. Som før betegner Δt differansen i kjøretid mellom et raskt og et langsomt tog over den strekningen vi ser på.

Den teknisk minste togfølgetid vil vanligvis være litt forskjellig for ulike togtyper (se kap. 3.6.3), men her setter vi togfølgetidene for tog i samme gruppe og for et langsomt etter et raskt til tt. Tilsvarende har vi en (midlere) rutemessig togfølgetid på tr for alle disse tilfellene. Togfølgetidene for et raskt tog etter et langsomt er tt + Δt teknisk sett og tr + Δt rutemessig. Disse togfølgetidene refererer utgangsstasjonen. Sett fra forskjellige steder på strekningen vil buffertiden mellom et tog fra hver pulje variere med hvor på strekningen man er.

En forsinkelse på et tog i en gruppe vil føre til forsinkelse på de etterfølgende tog i samme gruppe på samme måte som for ensartet trafikk. Hvis i og (i+1) betegner to tog i samme gruppe, gjelder altså fortsatt


Men hvis i betegner siste tog i en gruppe (og i+1 altså første tog i neste gruppe), har vi isteden

, for

, for


Forsinkelsesforplantningen forgår altså som for ensartet trafikk, unntagen mellom siste tog i puljen av raske tog og første tog i puljen av langsomme tog. Mellom disse to togene øker buffertiden fra tb ved utgangsstasjonen til (tb + Δt) ved sluttstasjonen. Her er det altså p.g.a. den blandede trafikk (og dermed lavere togantall) en større buffer mot spredning av forsinkelser. En forsinkelse p1 < tb vil derfor ikke spre seg til neste pulje av langsomme tog uansett hvor liten buffertiden er. Det forutsettes da at Δt er vesentlig større enn tb slik det vanligvis er i praksis.

I neste figur vises et eksempel på en forsinkelse for første tog i en gruppe (to langsomme og ett raskt tog) som sprer seg til hele denne og neste gruppe.

Fig-23.png

Figur 23: Eksempel på forsinkelsesforplantning ved blandet trafikk (n=2, m=1, j=5).

Ved blandet trafikk er det vesentlig mer komplisert å regne ut Σpi enn tilfellet var for ensartet trafikk. Summen vil også avhenge av hvilket nummer i gruppen toget med den første og den siste forsinkelsen har. For å bli kvitt denne avhengigheten antar vi derfor at forsinkelse kan oppstå på et hvilket som helst tog i gruppen med samme sannsynlighet. Tilsvarende antas at det nummer i gruppen som får den siste følgeforsinkelsen også er jevnt fordelt. Da kan man midle over alle forekomstene og således komme videre. Under disse forutsetningen kan man etter en del regning vise at den midlere samlede forsinkelse også nå kan uttrykkes ved


Som ved ensartet trafikk, gjør vi også her tilnærmelsen pj+1 = 0.

Formelt er dette det samme uttrykk som vi fant ved ensartet trafikk. Imidlertid er det nå en annen sammenheng mellom j og p1 enn ved ensartet trafikk (hvor vi med tilnærmelsen pj+1 = 0 hadde j = p1/tb).

For å finne en enkel sammenheng mellom j og p1 i denne situasjonen må vi forutsette at følgeforsinkelsen berører et helt antall grupper av tog (dvs. at j/(n+m) er et heltall). For forplantningen av forsinkelser fra et tog til neste er det da ett tilfelle med buffertid (tr + Δt - tt) for hver gruppe, mens de øvrige har buffertid (tr - tt). Vi kan da beregne en midlere buffertid () for blandet trafikk:


Sammenhengen mellom antall forsinkede tog og initialforsinkelsen kan da uttrykkes


Dermed kan den midlere samlede forsinkelse under disse forutsetninger uttrykkes


Også dette uttrykket for den samlede forsinkelse kan gis tolkningen:

sum forsinkelse = antall forsinkede tog * gjennomsnittlig forsinkelse.

Selv om dette uttrykket formelt er svært likt uttrykket for ensartet trafikk, kan det ikke uten videre brukes på samme måte. Pga. de forutsetninger som er gjort under utledningen, kan ikke dette uttrykket benyttes til å regne ut summen av alle forsinkelser i en konkret situasjon, gitt initialforsinkelse og det nummer i gruppen den gjelder. Avviket er særlig merkbart når p1/ er liten. Men slike behov kan enkelt dekkes ved å ta utgangspunkt i den gitte tallverdi for p1 og den aktuelle ruteplan.

Uttrykket ovenfor er imidlertid beregnet til bruk ved sammenlikning av ulike situasjoner m.h.p. infrastruktur og ruteplan, hvor initialforsinkelse og nummer i gruppen ikke er spesifisert. For slike gjennomsnittsbetraktninger har de tilnærmelser som er gjort, liten betydning.

Vi ser bl.a. at siden den midlere buffertid ved blandet trafikk, tb, er større enn tb ved ensartet trafikk, blir forplantningen mindre ved samme utnyttelsesgrad av kapasiteten. Samme utnyttelsesgrad tilsvarer imidlertid et vesentlig lavere togantall ved blandet trafikk enn ved ensartet trafikk, og dette er også årsaken til at forsinkelsene forplanter seg mindre. For situasjonen med forsinkelse fra utgangsstasjonen blir forholdet annerledes, se kap. 5.2.4.


Eksempel: Vi vil her se på et par situasjoner med blanding av stoppende og direkte tog som har rimelig relevans for JBVs forstadsstrekninger (Oslo - Lillestrøm/Ski/Asker).

Først ser vi på de samme forhold som i eksempelet i kap. 2.2.2 med stoppende og direkte tog annenhver gang. Vi setter fortsatt teknisk minste togfølgetid tt til 2 min og differansen i kjøretid Δt til 10 min.

Et typisk rutemønster med et tog av hver type pr. kvarter gir altså 8 tog/time, mens den teoretiske maksimalkapasitet er 9 tog/time (beregnet i eksempelet i kap. 2.2.2). Den rutemessige togfølgetid (tr) finnes (jfr. Figur 23) fra likningen


Dette gir tr = 2.5 min., og den midlere buffertiden blir da


Vi ser på en initialforsinkelse (som oppstår ute på strekningen) på 15 min. (Uttrykket utledet i det foregående forutsetter at forsinkelsen sprer seg til et helt antall grupper). Forplantningsfaktoren blir da


Den totale forsinkelsen (p1y) blir altså 30 min., dvs. følgeforsinkelsen er 15 min. Selv med en så høy kapasitetsutnyttelse som 89% (= 8/9), blir altså forsinkelsesforplantningen svært moderat sammenliknet med ensartet trafikk. Årsaken til dette er primært det lave antall tog pr. time.

Vi skal så se på en ruteplan med noe flere tog. Det er fortsatt stoppende tog hvert kvarter, men vi ser nå på 2 direkte tog pr. kvarter, altså totalt 12 tog/time. For sammenlikningens skyld vil vi ha nøyaktig samme kapasitetsutnyttelse som ovenfor, og differansen i kjøretid (Δt) må da være 7.33 min.

Den rutemessige togfølgetid (tr) finnes på samme måte som ovenfor, og den blir også nå 2.5 min. Den midlere buffertiden blir nå


Vi lar fortsatt initialforsinkelsen være 15 min. Forplantningsfaktoren blir da


Følgeforsinkelsen (p1y - p1) blir nå 30 min., altså en dobling i forhold til den første ruteplanen, selv om kapasitetsutnyttelsen er den samme i begge situasjonene.

Vi ser av dette eksempelet at forsinkelsesforplantningen ved blandet trafikk er ganske forskjellig fra situasjonen med ensartet trafikk selv om formeluttrykkene er nesten like. Forsinkelsesforplantningen ved blandet trafikk øker med økende antall tog selv om kapasitetsutnyttelsen er uendret. Dette til forskjell fra ensartet trafikk hvor kapasitetsutnyttelsen var den sentrale faktor. Dette omhandles noe mer i kap. 5.3.

Enkeltspor

På samme måte som for kapasitetsberegninger, er også beregning av forsinkelsesforplanting vesentlig mer komplisert for enkeltspor enn for dobbeltspor (ensrettet trafikk).

Også for enkeltspor kan man komme fram til uttrykk av formen


Uttrykket for y er imidlertid mer komplisert enn for dobbeltspor og inneholder flere parametere. Likeledes må man gjøre flere forutsetninger for å “komme fram” slik at avstanden fra virkelige ruteplaner blir større.

Ved trafikk i begge retninger på samme spor vil en forsinkelse også forsinke tog i motgående retning slik at y normalt er større da enn ved trafikk i en retning.

Vi skal her gi en kort omtale av utledningen gjort i ref. / 5 / for enkeltspor.

For en strekning som består av bare ett strekningsavsnitt, blir resultatet det samme som ved trafikk i en retning.

Mer generelt ser vi på en strekning som består av a like strekningsavsnitt. Vi ser bare på ruteplaner bestående av et enkelt nett (ingen puljekjøring) av like tog med kryssing på alle stasjoner. Det er videre forutsatt at tidstapet ved kryssing alltid legges til togene i en og samme retning. Det er da implisitt forutsatt at alle togene i denne retningen har lavere prioritet enn togene i motsatt retning. Vi regner også her med en konstant buffertid tb mellom alle togpar. Denne buffertiden er også lagt til togene i den lavest prioriterte retningen.

Uansett hvor på strekningen den første forsinkelse p1 oppstår, regner vi, som tidligere, med at toget over resten av strekningen beholder denne forsinkelsen (implisitt er det da forutsatt at dette toget kjører i den prioriterte retningen). Over det siste strekningsavsnittet (for dette toget) vil j etterfølgende tog forsinkes (sum begge retninger). Som for dobbeltspor er j = (p1/tb) når vi gjør tilnærmelsen pj+1= 0. Summen av disse forsinkelsene er da som tidligere utledet p1(p1/tb + 1)/2.

I tillegg kommer forsinkelser på en del tog i motgående retning tidligere på strekningen. Dette dreier seg om et tog pr. strekningsavsnitt f.o.m. det avsnitt der primærforsinkelsen oppsto t.o.m. det nest siste avsnittet på strekningen. Dette utgjør fra (a-1) til 0 tog avhengig av om primærforsinkelsen oppsto i alt fra første til siste strekningsavsnitt (i dette togets kjøreretning). I gjennomsnitt (over alle a) blir dette (a-1)/2 tog. Disse får alle en forsinkelse av størrelse (p1 - tb).

Summen av forsinkelser blir da i gjennomsnitt


Hvis vi ønsker å uttrykke dette med en forplantningsfaktor y, får vi som tidligere


hvor y nå er gitt ved


Dette uttrykket er som de tidligere, utledet under forutsetningen p1>tb. Da ser vi at forplantningen i følge dette uttrykket er større enn for dobbeltspor (ensrettet trafikk) og at forplantningen øker med økende antall strekningsavsnitt.

I denne utledningen er det ikke tatt hensyn til at togene i den lavt prioriterte retningen (de som tar tidstapet ved kryssingene) vil få redusert forsinkelsen før de når slutten av strekningen. Dette skyldes buffertiden mellom hvert tog, som tenkes lagt til kjøretiden for disse togene ved forlenget oppholdstid på hver stasjon. Uttrykket utledet ovenfor gjelder altså summen av de maksimale forsinkelser underveis, ikke forsinkelser til endestasjonene. Hvis man isteden ser på summen av forsinkelsene ved ankomst til endestasjonene, blir ikke summen av forsinkelsene uten videre større for enkeltspor enn for dobbeltspor.

Forsinkelse ved strekningens start

Vi vil her se på konsekvensene av forsinkelser som oppstår på eller før den første stasjonen på strekningen vi betrakter. Den øvrige trafikk kan da gå uhindret inntil det forsinkede toget er klar til å kjøre.

For ensartet trafikk (dobbeltspor) må vi se på to litt forskjellige tilfeller.

I det første tilfellet er strekningen “ledig” når det initielt forsinkede tog er klar til å kjøre, slik at dette ikke får noen tilleggsforsinkelse. Uansett når dette toget starter, vil neste tog kunne følge etter på teknisk minste togfølgetid, tt. Den maksimale følgeforsinkelsen for ett tog blir altså bare tt uansett initialforsinkelse. For den følgende utledning forutsettes også at den teknisk minste togfølgetid, tt, er større enn buffertiden tb.

Den samlede forsinkelse p.g.a. initialforsinkelsen p1 blir da


Vi har her brukt ≤ fordi det siste leddet vil variere (den første følgeforsinkelsen vil ligge et sted i intervallet [max (tt-tb, 0), tt]).

I det andre tilfellet er strekningen ikke “ledig” når det initielt forsinkede toget er klar til å kjøre slik at dette får en tilleggsforsinkelse som vil variere mellom 0 og tt. Den første følgeforsinkelsen blir da (tt-tb).

Den samlede forsinkelse p.g.a. initialforsinkelsen p1 blir


Vi får altså samme uttrykk for den samlede forsinkelse i begge tilfellene.

Dette uttrykket kan ikke omformes til p1 multiplisert med en forsinkelsesforplantning y fordi siste del er uavhengig av p1. Men vi kan sette


I denne situasjonen er altså følgeforsinkelsene uavhengig av p1, og de er av et lite omfang unntatt for ekstrem kapasitetsutnyttelse (tb nær null).

Denne utledningen er gjort under forutsetningen tt > tb. For den motsatte situasjonen har vi ganske enkelt


Dette svarer til at vi setter y(tt) = 1 når tt < tb slik som vi tidligere har gjort (når p1 < tb).

Eksempel: Vi vil her igjen se på fellesstrekningen for T-banene i Oslo, slik som i eksempelet i kap. 5.2.1. Men vi ser nå på en situasjon hvor et tog kommer forsinket fram til innfasingspunktet til fellesstrekningen. Togene fra de andre banene kan da gå uhindret inntil det forsinkede toget ankommer slik at følgeforsinkelsene her er uavhengig av initialforsinkelsen. (Vi forutsetter da at initialforsinkelsen ikke er så stor at neste tog fra samme bane berøres).

Vi ser fortsatt på situasjonen utenfor og i rushtid, med rutemessig togfølgetid på henholdsvis 225 og 122s. Med en teknisk minste togfølgetid (tt) på 90s blir buffertiden (tb) fortsatt henholdsvis 135 og 22s.

Vi kaller de samlede følgeforsinkelser for pf, og denne er da gitt ved


I situasjonen utenfor rushtid er tt < tb slik at y(tt) = 1, og de samlede følgeforsinkelser er da maksimalt tt = 90s.

I rushtiden er de samlede følgeforsinkelser maksimalt

min


Konsekvensene er altså betydelig mindre enn når forsinkelsen oppstår inne på fellesstrekningen. Vi understreker at dette resultatet forutsetter at øvrige tog går uhindret inntil det forsinkede toget er klart til å kjøre.


Vi går så over til å se på blandet trafikk. Også der er det to ulike tilfeller å diskutere.

Hvis det initielt forsinkede toget venter til det kan kjøre sammen med neste pulje av sine “egne” tog, blir også her den maksimale følgeforsinkelsen tt. Men tilleggsforsinkelsen for det initielt forsinkede toget kan da bli stor. I prinsippet kan den bli opptil Δt + ntr, men i slike situasjoner vil man i praksis ikke la toget vente til neste pulje. Da det dominerende leddet normalt er Δt, vil vi si at tilleggsforsinkelsen det første toget får, normalt er begrenset av Δt. Den samlede forsinkelse blir da


For følgeforsinkelsene har vi her brukt uttrykket for ensartet trafikk fordi forsinkelser av størrelse tt sjelden vil spre seg til neste gruppe.

Hvis det initielt forsinkede toget skal starte (og kjøre uhindret) med det samme det er klar til å kjøre (dvs. få minst mulig tilleggsforsinkelse), vil følgeforsinkelsene ofte bli større enn ovenfor. Generelt kan man da sette


hvor p’ angir differansen mellom start-tiden for det forsinkede toget og det siste rutemessige toget. Om man skal bruke den midlere buffertid () eller bare tb, vil avhenge av størrelsen på p’. p’ kan i prinsippet variere fra tt til (Δt + mtr). I praksis vil vi nok kunne regne med p’≤ Δt slik at vi får


Vi ser altså at konsekvensene av en initialforsinkelse ved strekningens start kan bli vesentlig større ved blandet trafikk enn ved ensartet trafikk. Dette skyldes at det gir større konsekvenser å bytte om rekkefølgen av tog med ulike kjøretider enn å bytte om rekkefølgen mellom ensartede tog.

Som en rimelig midlere verdi for p’ kan vi bruke 0.5Δt. Med typiske verdier for Δt, tt og tb vil det da være mest rimelig å bruke den midlere buffertid () slik at vi i gjennomsnitt grovt sett kan sette


Eksempel: Vi vil her igjen se på forholdene på JBVs forstadsstrekninger.

Vi skal anslå de samlede følgeforsinkelser (pf = Σpi - p1) for det første ruteopplegget vi brukte i eksempelet i kap. 5.2.2. Vi ser altså på situasjonen med stoppende og direkte tog annenhver gang hvor differansen i kjøretid (Δt) er 10 min. Den midlere buffertid () er fortsatt 5.5 min. De samlede følgeforsinkelser blir da normalt begrenset av

[min]


Mens vi for et grovt gjennomsnittlig anslag får

[min]


Vi ser at følgeforsinkelsen blir noe mindre når forsinkelsen oppstår ved strekningens start enn ute på strekningen (eksempelet i kap. 5.2.2). Men det er ikke den dramatiske nedgangen som vi fikk i eksempelet med ensartet trafikk.

I tillegg til de anslag over forsinkelser som er gjort ovenfor, kommer det forhold at blandet trafikk medfører betydelig vanskeligere avgjørelser for togleder. Når en forsinkelse oppstår ved strekningens start, vet man ofte ikke hvor lang tid det vil ta før det initielt forsinkede toget er klart. Beslutningen om togrekkefølge må normalt tas før man vet dette, og en optimal beslutning avhenger derfor av et korrekt estimat over hvor stor den initielle forsinkelse vil bli. Derfor vil følgeforsinkelsene i praksis lett bli betydelig større enn verdiene man får ved slike beregninger. Ved ensartet trafikk er toglederens arbeid lettere i dette henseende, og beregningene gjort i det tilfellet er derfor mer realistiske.


For den skjematiske situasjonen på enkeltspor som vi har behandlet tidligere i dette kapitlet, vil vi kunne gjøre liknende betraktninger. Vi kan da sette


hvor p’ angir differansen mellom start-tiden for det forsinkede toget og det siste rutemessige toget. p’ kan altså variere fra tt til tr. Videre vil alle motgående tog berøres, slik at vi har erstattet (a - 1)/2 med a i det siste leddet (dette kom fra midling over alle strekningsavsnitt hvor den initielle forsinkelse kunne oppstå, se kap. 5.2.3).

Selv om konsekvensene også her er uavhengige av p1, blir de likevel betydelige.

Sammenheng mellom forsinkelser og kapasitetsutnyttelse

Basert på de foregående avsnitt skal vi her vise relasjoner mellom forsinkelse og kapasitetsutnyttelse for noen enkle rutemodeller / situasjoner.

Noen forsinkelse-variable og relasjon til begrepet punktlighet

I det foregående har vi uttrykt summen av forsinkelser som en initialforsinkelse p1 fører til, ved

hvor uttrykket for forplantningsfaktoren y avhenger av type strekning og ruteopplegg.

Vi ser så generelt på en strekning av lengde L hvor det over et visst tidsrom, f.eks. et døgn, trafikkerer N tog. Hyppigheten av initialforsinkelser kan uttrykkes på forskjellige måter. Det enkleste er, som i ref. / 5 /, å forutsette ett tilfelle pr. q togkm i gjennomsnitt. I det gitte tidsrommet vil det da oppstå NL/q initielle forsinkelser. Det forutsettes at det er så lenge mellom hver initiell forsinkelse at alle følgeforsinkelsene er forsvunnet før en ny initialforsinkelse oppstår. Den totale forsinkelse P i det gitte tidsrom blir da

Dette uttrykket tar imidlertid ikke hensyn til at størrelsen på initialforsinkelsen p1 vil variere fra gang til gang. For å ta hensyn til dette må man kjenne sannsynlighetsfordelingen for initielle forsinkelser, her kalt f(p1). Forventningen av den totale forsinkelse over et langt tidsrom (omfattende N tog) vil da kunne uttrykkes


I praksis vil det være vanskelig å finne pålitelig verdi av en slik sannsynlighetsfordeling. Det er også sjelden spørsmål etter den totale forsinkelse i den her brukte betydning.

Når begrepet punktlighet benyttes, er det ofte i form av prosentvis andel av tog med forsinkelse over en viss størrelse. Et slikt begrep er matematisk vanskelig å håndtere. Innen den formalisme som her er presentert, vil man antagelig komme nærmere ved å se på gjennomsnittlig forsinkelse pr. tog: P/N. Siden vi alltid tar utgangspunkt i en spesifikk initialforsinkelse p1, vil vi se på gjennomsnittlig forsinkelse pr. tog og initialforsinkelse:


Da vi her ikke tar opp hyppigheten av primære forsinkelser (q), må L/q betraktes som en konstant i denne sammenheng. Vi sitter da tilbake med forplantningsfaktoren y(p1) som den sentrale størrelse å drøfte. Beklageligvis er også denne avhengig av p1, men denne avhengigheten kan man ikke komme bort fra. For sammenlikning av ulike alternativer m.h.p. infrastruktur, utnyttelsesgrad osv. kommer man oftest langt ved å sammenlikne ved samme primærforsinkelse. Dette vil derfor bli gjort i det følgende.

Dobbeltspor med ensartet trafikk

Vi går så videre med den samme type situasjon som ble behandlet i kap. 5.2. Der ble forsinkelsesforplantningen y uttrykt som funksjon av initialforsinkelsen p1 og med buffertiden tb som parameter. Da buffertiden er en størrelse som mange ikke “har noe forhold til”, skal vi trekke inn kapasitetsutnyttelsen som parameter isteden for buffertiden. Vi vil da bruke utnyttelsesgraden u fra kap. 2.3, definert som forholdet mellom den praktiske og den teoretiske kapasitet, eller som forholdet mellom det virkelige togantall pr. tidsenhet og det teoretisk maksimale.

Forholdet mellom det faktiske togantall (N) i et tidsrom T og den faktiske buffertid (tb) uttrykkes på samme måte som den praktiske kapasitet


Det maksimale togantall i et tidsrom T er lik den teoretisk maksimale kapasitet


Utnyttelsesgraden er da


Ved å innføre tr herfra får vi at buffertiden kan uttrykkes


Dette kan brukes til å eliminere buffertiden i forplantningsfaktoren y slik at denne isteden uttrykker avhengigheten av utnyttelsesgraden u:


Når vi skal se på hvordan forplantningen av forsinkelser varierer med utnyttelsesgraden, kan vi betrakte p1/2tt som en parameter (her kalt k) slik at vi kan sette


For konkret å vise hvordan forsinkelsesforplantningen “eksploderer” med økende kapasitetsutnyttelse har vi satt opp en tabell som viser y for noen u-verdier.

Utnyttelsesgrad Forsinkelsesforplantning (y)
25% (u = 1/4) 0.33k + 0.5
33% (u = 1/3) 0.5 k + 0.5
40% (u = 2/5) 0.67k + 0.5
50% (u = 1/2) 1 k + 0.5
66% (u = 2/3) 2 k + 0.5
75% (u = 3/4) 3 k + 0.5
80% (u = 4/5) 4 k + 0.5
90% (u = 9/10) 9 k + 0.5
95% (u = 19/20) 19k + 0.5


Her ser man f.eks. at en økning av kapasitetsutnyttelsen fra 50 til 75% fører til at forsinkelsesforplantningen nesten tredobles. Uansett initialforsinkelse blir altså konsekvensene omtrent tre ganger så store bare som følge av denne økte utnyttelse. Tilsvarende fører en videre økning av utnyttelsesgraden til 90% til ytterligere nesten en tredobling.

Eksempel: Vi vil her se på beregningene i eksempelet i kap. 5.2.1 (fellesstrekningen for T-banene i Oslo) i lys av utledningen i det foregående og tabellen ovenfor.

Den teknisk minste togfølgetiden satte vi til 90s (1.5min.). Den teoretiske kapasiteten er altså 10 tog/kvarter. Vi beregnet forsinkelsesforplantningen for 4 og 8 tog/kvarter; kapasitetsutnyttelsen var altså 40% utenom rushtid og 80% i rushtid.

Av tabellen ovenfor kan vi raskt sette opp forholdet mellom forplantningsfaktorene (her kalt y4 og y8) i de to situasjonene: